Soluzioni
Calcolatore integraleCalcolatore di derivateCalcolatore di algebraCalcolatore della matriceDi più...
Grafico
Grafico lineareGrafico esponenzialeGrafico quadraticoGrafico del senoDi più...
Calcolatrici
Calcolatore dell'IMCCalcolatore dell'interesse compostoCalcolatore percentualeCalcolatore dell'accelerazioneDi più...
Geometria
Calcolatore del teorema di PitagoraCalcolatore dell'area del cerchioCalcolatore del triangolo isosceleCalcolatore dei triangoliDi più...
Utensili
NotebookGruppiTrucchettiFogli di lavoroPraticaVerifica
it
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popolare Calcoli >

laplacetransform 10cos(8t)+14sin(8t)

  • Pre-algebra
  • Algebra
  • Pre-calcolo
  • Calcolo
  • Funzioni
  • Algebra lineare
  • Trigonometria
  • Statistica
  • Chimica
  • Economia
  • Conversioni

Soluzione

trasformata di laplace 10cos(8t)+14sin(8t)

Soluzione

s2+6410s​+s2+64112​
Fasi della soluzione
L{10cos(8t)+14sin(8t)}
Utilizzare la proprietà di linearità della trasformata di Laplace:
Per le funzioni f(t),g(t) e le costanti
=10L{cos(8t)}+14L{sin(8t)}
L{cos(8t)}:s2+64s​
L{sin(8t)}:s2+648​
=10⋅s2+64s​+14⋅s2+648​
Raffinare 10s2+64s​+14s2+648​:s2+6410s​+s2+64112​
=s2+6410s​+s2+64112​

Esempi popolari

limit as x approaches 1 of 2x^{3/2}-3x^2derivative of 7sqrt(x^2+8x)tangent f(x)=3x^2+2x,\at p(-1,5)sum from n=1 to infinity of (2n^2)/(n!)(\partial)/(\partial x)(sin(pi(5x-3y)))
Strumenti di StudioAI Math SolverFogli di lavoroPraticaTrucchettiCalcolatriciCalcolatrice graficaGeometry CalculatorVerifica soluzione
AppApplicazione Symbolab (Android)Calcolatrice grafica (Android)Pratica (Android)Applicazione Symbolab (iOS)Calcolatrice grafica (iOS)Pratica (iOS)Estensione ChromeSymbolab Math Solver API
AziendaRiguardo SymbolabBlogGuida
LegalePrivacyTermini del contrattoPolitica CookieImpostazioni dei cookieNon vendere o condividere le mie informazioni personaliCopyright, Community Linee guida, DSA & altre Risorse LegaliLearneo Centro Legale
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024