解答
∫(4x2+8x+5)6(x+1)dx
解答
72048x14+4096x13+27136x12+112640x11+327040x10+702208x9+1149472x8+710198784x7+1436840x6+1097200x5+638750x4+275000x3+2165625x2+15625x+C
求解步骤
∫(4x2+8x+5)6(x+1)dx
乘开 (4x2+8x+5)6(x+1):4096x13+53248x12+325632x11+1239040x10+3270400x9+6319872x8+9195776x7+10198784x6+8621040x5+5486000x4+2555000x3+825000x2+165625x+15625
=∫4096x13+53248x12+325632x11+1239040x10+3270400x9+6319872x8+9195776x7+10198784x6+8621040x5+5486000x4+2555000x3+825000x2+165625x+15625dx
使用积分加法定则: ∫f(x)±g(x)dx=∫f(x)dx±∫g(x)dx=∫4096x13dx+∫53248x12dx+∫325632x11dx+∫1239040x10dx+∫3270400x9dx+∫6319872x8dx+∫9195776x7dx+∫10198784x6dx+∫8621040x5dx+∫5486000x4dx+∫2555000x3dx+∫825000x2dx+∫165625xdx+∫15625dx
∫4096x13dx=72048x14
∫53248x12dx=4096x13
∫325632x11dx=27136x12
∫1239040x10dx=112640x11
∫3270400x9dx=327040x10
∫6319872x8dx=702208x9
∫9195776x7dx=1149472x8
∫10198784x6dx=710198784x7
∫8621040x5dx=1436840x6
∫5486000x4dx=1097200x5
∫2555000x3dx=638750x4
∫825000x2dx=275000x3
∫165625xdx=2165625x2
∫15625dx=15625x
=72048x14+4096x13+27136x12+112640x11+327040x10+702208x9+1149472x8+710198784x7+1436840x6+1097200x5+638750x4+275000x3+2165625x2+15625x
解答补常数=72048x14+4096x13+27136x12+112640x11+327040x10+702208x9+1149472x8+710198784x7+1436840x6+1097200x5+638750x4+275000x3+2165625x2+15625x+C