Soluzioni
Calcolatore integraleCalcolatore di derivateCalcolatore di algebraCalcolatore della matriceDi più...
Grafico
Grafico lineareGrafico esponenzialeGrafico quadraticoGrafico del senoDi più...
Calcolatrici
Calcolatore dell'IMCCalcolatore dell'interesse compostoCalcolatore percentualeCalcolatore dell'accelerazioneDi più...
Geometria
Calcolatore del teorema di PitagoraCalcolatore dell'area del cerchioCalcolatore del triangolo isosceleCalcolatore dei triangoliDi più...
AI Chat
Utensili
NotebookGruppiTrucchettiFogli di lavoroPraticaVerifica
it
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popolare Trigonometria >

cos(18)

  • Pre-algebra
  • Algebra
  • Pre-calcolo
  • Calcolo
  • Funzioni
  • Algebra lineare
  • Trigonometria
  • Statistica
  • Chimica
  • Economia
  • Conversioni

Soluzione

cos(18∘)

Soluzione

42​5+5​​​
+1
Decimale
0.95105…
Fasi della soluzione
cos(18∘)
Riscrivere utilizzando identità trigonometriche:21+cos(36∘)​​
cos(18∘)
Scrivere cos(18∘)come cos(236∘​)=cos(236∘​)
Usare l'Identità Metà Angolo:cos(2θ​)=21+cos(θ)​​
Usare l'Identità Doppio Angolocos(2θ)=2cos2(θ)−1
Sostituisci θ con 2θ​cos(θ)=2cos2(2θ​)−1
Scambia i lati2cos2(2θ​)=1+cos(θ)
Dividere entrambi i lati per 2cos2(2θ​)=2(1+cos(θ))​
Estrai la radice quadrata da entrambi i lati
Scegli il segno della radice secondo lo stesso quadrante di 2θ​:
range[0,90∘][90∘,180∘][180∘,270∘][270∘,360∘]​quadranteIIIIIIIV​sinpositivopositivonegativonegativo​cospositivonegativonegativopositivo​​
cos(2θ​)=2(1+cos(θ))​​
=21+cos(36∘)​​
=21+cos(36∘)​​
Riscrivere utilizzando identità trigonometriche:cos(36∘)=45​+1​
cos(36∘)
Mostra che: cos(36∘)−sin(18∘)=21​
Usare il seguente prodotto per l'identità di somma: 2sin(x)cos(y)=sin(x+y)−sin(x−y)2cos(36∘)sin(18∘)=sin(54∘)−sin(18∘)
Mostra che: 2cos(36∘)sin(18∘)=21​
Usare l'Identità Doppio Angolo: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Dividere entrambi i lati per sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Usare l'identità seguente: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Dividere entrambi i lati per cos(18∘)1=4sin(18∘)cos(36∘)
Dividere entrambi i lati per 221​=2sin(18∘)cos(36∘)
Sostituisci 21​=2sin(18∘)cos(36∘)21​=sin(54∘)−sin(18∘)
sin(54∘)=cos(90∘−54∘)21​=cos(90∘−54∘)−sin(18∘)
21​=cos(36∘)−sin(18∘)
Mostra che: cos(36∘)+sin(18∘)=45​​
Usa la regola di fattorizzazione: a2−b2=(a+b)(a−b)a=cos(36∘)+sin(18∘)(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))((cos(36∘)+sin(18∘))−(cos(36∘)−sin(18∘)))
Affinare(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=2(2cos(36∘)sin(18∘))
Mostra che: 2cos(36∘)sin(18∘)=21​
Usare l'Identità Doppio Angolo: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Dividere entrambi i lati per sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Usare l'identità seguente: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Dividere entrambi i lati per cos(18∘)1=4sin(18∘)cos(36∘)
Dividere entrambi i lati per 221​=2sin(18∘)cos(36∘)
Sostituisci 2cos(36∘)sin(18∘)=21​(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=1
Sostituisci cos(36∘)−sin(18∘)=21​(cos(36∘)+sin(18∘))2−(21​)2=1
Affinare(cos(36∘)+sin(18∘))2−41​=1
Aggiungi 41​ ad entrambi i lati(cos(36∘)+sin(18∘))2−41​+41​=1+41​
Affinare(cos(36∘)+sin(18∘))2=45​
Prendi la radice quadrata di entrambi i laticos(36∘)+sin(18∘)=±45​​
cos(36∘)non può essere negativosin(18∘)non può essere negativocos(36∘)+sin(18∘)=45​​
Aggiungi le seguenti equazionicos(36∘)+sin(18∘)=25​​((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))=(25​​+21​)
Affinarecos(36∘)=45​+1​
=45​+1​
=21+45​+1​​​
Semplificare 21+45​+1​​​:42​5+5​​​
21+45​+1​​​
21+45​+1​​=85+5​​
21+45​+1​​
Unisci 1+45​+1​:45+5​​
1+45​+1​
Converti l'elemento in frazione: 1=41⋅4​=41⋅4​+45​+1​
Poiché i denominatori sono uguali, combinare le frazioni: ca​±cb​=ca±b​=41⋅4+5​+1​
1⋅4+5​+1=5+5​
1⋅4+5​+1
Moltiplica i numeri: 1⋅4=4=4+5​+1
Aggiungi i numeri: 4+1=5=5+5​
=45+5​​
=245+5​​​
Applica la regola delle frazioni: acb​​=c⋅ab​=4⋅25+5​​
Moltiplica i numeri: 4⋅2=8=85+5​​
=85+5​​​
Applicare la regola della radice: nba​​=nb​na​​, assumendo a≥0,b≥0=8​5+5​​​
8​=22​
8​
Fattorizzazione prima di 8:23
8
8diviso per 28=4⋅2=2⋅4
4diviso per 24=2⋅2=2⋅2⋅2
2 è un numero primo, quindi non è possibile ulteriore fattorizzazione=2⋅2⋅2
=23
=23​
Applica la regola degli esponenti: ab+c=ab⋅ac=22⋅2​
Applicare la regola della radice: nab​=na​nb​=2​22​
Applicare la regola della radice: nan​=a22​=2=22​
=22​5+5​​​
Razionalizzare 22​5+5​​​:42​5+5​​​
22​5+5​​​
Moltiplicare per il coniugato 2​2​​=22​2​5+5​​2​​
22​2​=4
22​2​
Applica la regola degli esponenti: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Aggiungi elementi simili: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Moltiplica le frazioni: a⋅cb​=ca⋅b​=21⋅2​
Cancella il fattore comune: 2=1
=21+1
Aggiungi i numeri: 1+1=2=22
22=4=4
=42​5+5​​​
=42​5+5​​​
=42​5+5​​​

Esempi popolari

arctan(10)arctan(10)arctan((sqrt(3))/1)arctan(13​​)sin(62)sin(62∘)cos(7)cos(7)sec(270)sec(270∘)
Strumenti di StudioAI Math SolverAI ChatFogli di lavoroPraticaTrucchettiCalcolatriciCalcolatrice graficaGeometry CalculatorVerifica soluzione
AppApplicazione Symbolab (Android)Calcolatrice grafica (Android)Pratica (Android)Applicazione Symbolab (iOS)Calcolatrice grafica (iOS)Pratica (iOS)Estensione Chrome
AziendaRiguardo SymbolabBlogGuida
LegalePrivacyService TermsPolitica CookieImpostazioni dei cookieNon vendere o condividere le mie informazioni personaliCopyright, Community Linee guida, DSA & altre Risorse LegaliLearneo Centro Legale
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024