Soluciones
Calculadora de integrales (antiderivadas)Calculadora de derivadasCalculadora de ÁlgebraCalculadora de matricesMás...
Gráficos
Gráfica de líneaGráfica exponencialGráfica cuadráticaGráfico de senoMás...
Calculadoras
Calculadora de IMCCalculadora de interés compuestoCalculadora de porcentajeCalculadora de aceleraciónMás...
Geometría
Calculadora del teorema de pitágorasCalculadora del área del círculoCalculadora de triángulo isóscelesCalculadora de TriángulosMás...
Herramientas
CuadernoGruposHojas de referenciaHojas de trabajoPracticaVerificar
es
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometría >

3tanh(2θ)=5sech(θ)+1

  • Pre-Álgebra
  • Álgebra
  • Precálculo
  • Cálculo
  • Funciones
  • Álgebra Lineal
  • Trigonometría
  • Estadística
  • Química
  • Economía
  • Conversiones

Solución

3tanh(2θ)=5sech(θ)+1

Solución

θ=ln(4.82043…)
+1
Grados
θ=90.11846…∘
Pasos de solución
3tanh(2θ)=5sech(θ)+1
Re-escribir usando identidades trigonométricas
3tanh(2θ)=5sech(θ)+1
Utilizar la identidad hiperbólica: tanh(x)=ex+e−xex−e−x​3⋅e2θ+e−2θe2θ−e−2θ​=5sech(θ)+1
Utilizar la identidad hiperbólica: sech(x)=ex+e−x2​3⋅e2θ+e−2θe2θ−e−2θ​=5⋅eθ+e−θ2​+1
3⋅e2θ+e−2θe2θ−e−2θ​=5⋅eθ+e−θ2​+1
3⋅e2θ+e−2θe2θ−e−2θ​=5⋅eθ+e−θ2​+1:θ=ln(4.82043…)
3⋅e2θ+e−2θe2θ−e−2θ​=5⋅eθ+e−θ2​+1
Aplicar las leyes de los exponentes
3⋅e2θ+e−2θe2θ−e−2θ​=5⋅eθ+e−θ2​+1
Aplicar las leyes de los exponentes: abc=(ab)ce2θ=(eθ)2,e−2θ=(eθ)−2,e−θ=(eθ)−13⋅(eθ)2+(eθ)−2(eθ)2−(eθ)−2​=5⋅eθ+(eθ)−12​+1
3⋅(eθ)2+(eθ)−2(eθ)2−(eθ)−2​=5⋅eθ+(eθ)−12​+1
Re escribir la ecuación con eθ=u3⋅(u)2+(u)−2(u)2−(u)−2​=5⋅u+(u)−12​+1
Resolver 3⋅u2+u−2u2−u−2​=5⋅u+u−12​+1:u≈−0.45284…,u≈4.82043…
3⋅u2+u−2u2−u−2​=5⋅u+u−12​+1
Simplificaru4+13(u4−1)​=u2+110u​+1
Multiplicar por el mínimo común múltiplo
u4+13(u4−1)​=u2+110u​+1
Encontrar el mínimo común múltiplo de u4+1,u2+1:(u2+1)(u2+2​u+1)(u2−2​u+1)
u4+1,u2+1
Mínimo común múltiplo (MCM)
Factorizar las expresiones
Factorizar u4+1:(u2+2​u+1)(u2−2​u+1)
u4+1
u4+1=(u2+2​u+1)(u2−2​u+1)=(u2+2​u+1)(u2−2​u+1)
Calcular una expresión que este compuesta de factores que aparezcan tanto en (u2+2​u+1)(u2−2​u+1) o u2+1=(u2+1)(u2+2​u+1)(u2−2​u+1)
Multiplicar por el mínimo común múltiplo=(u2+1)(u2+2​u+1)(u2−2​u+1)u4+13(u4−1)​(u2+1)(u2+2​u+1)(u2−2​u+1)=u2+110u​(u2+1)(u2+2​u+1)(u2−2​u+1)+1⋅(u2+1)(u2+2​u+1)(u2−2​u+1)
Simplificar
u4+13(u4−1)​(u2+1)(u2+2​u+1)(u2−2​u+1)=u2+110u​(u2+1)(u2+2​u+1)(u2−2​u+1)+1⋅(u2+1)(u2+2​u+1)(u2−2​u+1)
Simplificar u4+13(u4−1)​(u2+1)(u2+2​u+1)(u2−2​u+1):3(u+1)(u−1)(u2+1)2
u4+13(u4−1)​(u2+1)(u2+2​u+1)(u2−2​u+1)
Multiplicar fracciones: a⋅cb​=ca⋅b​=u4+13(u4−1)(u2+1)(u2+2​u+1)(u2−2​u+1)​
Factorizar 3(u4−1)(u2+1)(u2+2​u+1)(u2−2​u+1):3(u+1)(u−1)(u2+1)2(u2+2​u+1)(u2−2​u+1)
3(u4−1)(u2+1)(u2+2​u+1)(u2−2​u+1)
Factorizar u4−1:(u2+1)(u+1)(u−1)
u4−1
Reescribir u4−1 como (u2)2−12
u4−1
Reescribir 1 como 12=u4−12
Aplicar las leyes de los exponentes: abc=(ab)cu4=(u2)2=(u2)2−12
=(u2)2−12
Aplicar la siguiente regla para binomios al cuadrado: x2−y2=(x+y)(x−y)(u2)2−12=(u2+1)(u2−1)=(u2+1)(u2−1)
Factorizar u2−1:(u+1)(u−1)
u2−1
Reescribir 1 como 12=u2−12
Aplicar la siguiente regla para binomios al cuadrado: x2−y2=(x+y)(x−y)u2−12=(u+1)(u−1)=(u+1)(u−1)
=(u2+1)(u+1)(u−1)
=3(u+1)(u−1)(u2+1)2(u2+2​u+1)(u2−2​u+1)
=u4+13(u+1)(u−1)(u2+1)2(u2+2​u+1)(u2−2​u+1)​
u4+1=(u2+2​u+1)(u2−2​u+1)=(u2+2​u+1)(u2−2​u+1)3(u+1)(u−1)(u2+1)2(u2+2​u+1)(u2−2​u+1)​
Cancelar (u2+2​u+1)(u2−2​u+1)3(u+1)(u−1)(u2+1)2(u2+2​u+1)(u2−2​u+1)​:3(u+1)(u−1)(u2+1)2
(u2+2​u+1)(u2−2​u+1)3(u+1)(u−1)(u2+1)2(u2+2​u+1)(u2−2​u+1)​
Eliminar los terminos comunes: u2+2​u+1=u2−2​u+13(u+1)(u−1)(u2+1)2(u2−2​u+1)​
Eliminar los terminos comunes: u2−2​u+1=3(u+1)(u−1)(u2+1)2
=3(u+1)(u−1)(u2+1)2
Simplificar u2+110u​(u2+1)(u2+2​u+1)(u2−2​u+1):10u(u2+2​u+1)(u2−2​u+1)
u2+110u​(u2+1)(u2+2​u+1)(u2−2​u+1)
Multiplicar fracciones: a⋅cb​=ca⋅b​=u2+110u(u2+1)(u2+2​u+1)(u2−2​u+1)​
Eliminar los terminos comunes: u2+1=10u(u2+2​u+1)(u2−2​u+1)
Simplificar 1⋅(u2+1)(u2+2​u+1)(u2−2​u+1):(u2+1)(u2+2​u+1)(u2−2​u+1)
1⋅(u2+1)(u2+2​u+1)(u2−2​u+1)
Multiplicar: 1⋅(u2+1)=(u2+1)=(u2+1)(u2+2​u+1)(u2−2​u+1)
3(u+1)(u−1)(u2+1)2=10u(u2+2​u+1)(u2−2​u+1)+(u2+1)(u2+2​u+1)(u2−2​u+1)
3(u+1)(u−1)(u2+1)2=10u(u2+2​u+1)(u2−2​u+1)+(u2+1)(u2+2​u+1)(u2−2​u+1)
3(u+1)(u−1)(u2+1)2=10u(u2+2​u+1)(u2−2​u+1)+(u2+1)(u2+2​u+1)(u2−2​u+1)
Resolver 3(u+1)(u−1)(u2+1)2=10u(u2+2​u+1)(u2−2​u+1)+(u2+1)(u2+2​u+1)(u2−2​u+1):u≈−0.45284…,u≈4.82043…
3(u+1)(u−1)(u2+1)2=10u(u2+2​u+1)(u2−2​u+1)+(u2+1)(u2+2​u+1)(u2−2​u+1)
Desarrollar 3(u+1)(u−1)(u2+1)2:3u6+3u4−3u2−3
3(u+1)(u−1)(u2+1)2
(u2+1)2=u4+2u2+1
(u2+1)2
Aplicar la formula del binomio al cuadrado: (a+b)2=a2+2ab+b2a=u2,b=1
=(u2)2+2u2⋅1+12
Simplificar (u2)2+2u2⋅1+12:u4+2u2+1
(u2)2+2u2⋅1+12
Aplicar la regla 1a=112=1=(u2)2+2⋅1⋅u2+1
(u2)2=u4
(u2)2
Aplicar las leyes de los exponentes: (ab)c=abc=u2⋅2
Multiplicar los numeros: 2⋅2=4=u4
2u2⋅1=2u2
2u2⋅1
Multiplicar los numeros: 2⋅1=2=2u2
=u4+2u2+1
=u4+2u2+1
=3(u+1)(u−1)(u4+2u2+1)
Expandir (u+1)(u−1):u2−1
(u+1)(u−1)
Aplicar la siguiente regla para binomios al cuadrado: (a+b)(a−b)=a2−b2a=u,b=1=u2−12
Aplicar la regla 1a=112=1=u2−1
=3(u2−1)(u4+2u2+1)
Expandir (u2−1)(u4+2u2+1):u6+u4−u2−1
(u2−1)(u4+2u2+1)
Aplicar la siguiente regla de productos notables=u2u4+u2⋅2u2+u2⋅1+(−1)u4+(−1)⋅2u2+(−1)⋅1
Aplicar las reglas de los signos+(−a)=−a=u4u2+2u2u2+1⋅u2−1⋅u4−1⋅2u2−1⋅1
Simplificar u4u2+2u2u2+1⋅u2−1⋅u4−1⋅2u2−1⋅1:u6+u4−u2−1
u4u2+2u2u2+1⋅u2−1⋅u4−1⋅2u2−1⋅1
u4u2=u6
u4u2
Aplicar las leyes de los exponentes: ab⋅ac=ab+cu4u2=u4+2=u4+2
Sumar: 4+2=6=u6
2u2u2=2u4
2u2u2
Aplicar las leyes de los exponentes: ab⋅ac=ab+cu2u2=u2+2=2u2+2
Sumar: 2+2=4=2u4
1⋅u2=u2
1⋅u2
Multiplicar: 1⋅u2=u2=u2
1⋅u4=u4
1⋅u4
Multiplicar: 1⋅u4=u4=u4
1⋅2u2=2u2
1⋅2u2
Multiplicar los numeros: 1⋅2=2=2u2
1⋅1=1
1⋅1
Multiplicar los numeros: 1⋅1=1=1
=u6+2u4+u2−u4−2u2−1
Agrupar términos semejantes=u6+2u4−u4+u2−2u2−1
Sumar elementos similares: u2−2u2=−u2=u6+2u4−u4−u2−1
Sumar elementos similares: 2u4−u4=u4=u6+u4−u2−1
=u6+u4−u2−1
=3(u6+u4−u2−1)
Expandir 3(u6+u4−u2−1):3u6+3u4−3u2−3
3(u6+u4−u2−1)
Aplicar la siguiente regla de productos notables=3u6+3u4+3(−u2)+3(−1)
Aplicar las reglas de los signos+(−a)=−a=3u6+3u4−3u2−3⋅1
Multiplicar los numeros: 3⋅1=3=3u6+3u4−3u2−3
=3u6+3u4−3u2−3
Desarrollar 10u(u2+2​u+1)(u2−2​u+1)+(u2+1)(u2+2​u+1)(u2−2​u+1):10u5+10u+u6+u4+u2+1
10u(u2+2​u+1)(u2−2​u+1)+(u2+1)(u2+2​u+1)(u2−2​u+1)
Expandir 10u(u2+2​u+1)(u2−2​u+1):10u5+10u
Expandir (u2+2​u+1)(u2−2​u+1):u4+1
(u2+2​u+1)(u2−2​u+1)
Aplicar la siguiente regla de productos notables=u2u2+u2(−2​u)+u2⋅1+2​uu2+2​u(−2​u)+2​u⋅1+1⋅u2+1⋅(−2​u)+1⋅1
Aplicar las reglas de los signos+(−a)=−a=u2u2−2​u2u+1⋅u2+2​u2u−2​2​uu+1⋅2​u+1⋅u2−1⋅2​u+1⋅1
Simplificar u2u2−2​u2u+1⋅u2+2​u2u−2​2​uu+1⋅2​u+1⋅u2−1⋅2​u+1⋅1:u4+1
u2u2−2​u2u+1⋅u2+2​u2u−2​2​uu+1⋅2​u+1⋅u2−1⋅2​u+1⋅1
Agrupar términos semejantes=u2u2−2​u2u+1⋅u2+2​u2u+1⋅u2−2​2​uu+1⋅2​u−1⋅2​u+1⋅1
Sumar elementos similares: 1⋅2​u−1⋅2​u=0=u2u2−2​u2u+1⋅u2+2​u2u+1⋅u2−2​2​uu+1⋅1
Sumar elementos similares: −2​u2u+2​u2u=0=u2u2+1⋅u2+1⋅u2−2​2​uu+1⋅1
Sumar elementos similares: 1⋅u2+1⋅u2=2u2=u2u2+2u2−2​2​uu+1⋅1
u2u2=u4
u2u2
Aplicar las leyes de los exponentes: ab⋅ac=ab+cu2u2=u2+2=u2+2
Sumar: 2+2=4=u4
2​2​uu=2u2
2​2​uu
Aplicar las leyes de los exponentes: a​a​=a2​2​=2=2uu
Aplicar las leyes de los exponentes: ab⋅ac=ab+cuu=u1+1=2u1+1
Sumar: 1+1=2=2u2
1⋅1=1
1⋅1
Multiplicar los numeros: 1⋅1=1=1
=u4+2u2−2u2+1
Sumar elementos similares: 2u2−2u2=0=u4+1
=u4+1
=10u(u4+1)
Expandir 10u(u4+1):10u5+10u
10u(u4+1)
Poner los parentesis utilizando: a(b+c)=ab+aca=10u,b=u4,c=1=10uu4+10u⋅1
=10u4u+10⋅1⋅u
Simplificar 10u4u+10⋅1⋅u:10u5+10u
10u4u+10⋅1⋅u
10u4u=10u5
10u4u
Aplicar las leyes de los exponentes: ab⋅ac=ab+cu4u=u4+1=10u4+1
Sumar: 4+1=5=10u5
10⋅1⋅u=10u
10⋅1⋅u
Multiplicar los numeros: 10⋅1=10=10u
=10u5+10u
=10u5+10u
=10u5+10u
=10u5+10u+(u2+1)(u2+2​u+1)(u2−2​u+1)
Expandir (u2+1)(u2+2​u+1)(u2−2​u+1):u6+u4+u2+1
Expandir (u2+1)(u2+2​u+1):u4+2​u3+2u2+2​u+1
(u2+1)(u2+2​u+1)
Aplicar la siguiente regla de productos notables=u2u2+u22​u+u2⋅1+1⋅u2+1⋅2​u+1⋅1
=u2u2+2​u2u+1⋅u2+1⋅u2+1⋅2​u+1⋅1
Simplificar u2u2+2​u2u+1⋅u2+1⋅u2+1⋅2​u+1⋅1:u4+2​u3+2u2+2​u+1
u2u2+2​u2u+1⋅u2+1⋅u2+1⋅2​u+1⋅1
Sumar elementos similares: 1⋅u2+1⋅u2=2u2=u2u2+2​u2u+2u2+1⋅2​u+1⋅1
u2u2=u4
u2u2
Aplicar las leyes de los exponentes: ab⋅ac=ab+cu2u2=u2+2=u2+2
Sumar: 2+2=4=u4
2​u2u=2​u3
2​u2u
Aplicar las leyes de los exponentes: ab⋅ac=ab+cu2u=u2+1=2​u2+1
Sumar: 2+1=3=2​u3
1⋅2​u=2​u
1⋅2​u
Multiplicar: 1⋅2​=2​=2​u
1⋅1=1
1⋅1
Multiplicar los numeros: 1⋅1=1=1
=u4+2​u3+2u2+2​u+1
=u4+2​u3+2u2+2​u+1
=(u4+2​u3+2u2+2​u+1)(u2−2​u+1)
Expandir (u4+2​u3+2u2+2​u+1)(u2−2​u+1):u6+u4+u2+1
(u4+2​u3+2u2+2​u+1)(u2−2​u+1)
Aplicar la siguiente regla de productos notables=u4u2+u4(−2​u)+u4⋅1+2​u3u2+2​u3(−2​u)+2​u3⋅1+2u2u2+2u2(−2​u)+2u2⋅1+2​uu2+2​u(−2​u)+2​u⋅1+1⋅u2+1⋅(−2​u)+1⋅1
Aplicar las reglas de los signos+(−a)=−a=u4u2−2​u4u+1⋅u4+2​u3u2−2​2​u3u+1⋅2​u3+2u2u2−22​u2u+2⋅1⋅u2+2​u2u−2​2​uu+1⋅2​u+1⋅u2−1⋅2​u+1⋅1
Simplificar u4u2−2​u4u+1⋅u4+2​u3u2−2​2​u3u+1⋅2​u3+2u2u2−22​u2u+2⋅1⋅u2+2​u2u−2​2​uu+1⋅2​u+1⋅u2−1⋅2​u+1⋅1:u6+u4+u2+1
u4u2−2​u4u+1⋅u4+2​u3u2−2​2​u3u+1⋅2​u3+2u2u2−22​u2u+2⋅1⋅u2+2​u2u−2​2​uu+1⋅2​u+1⋅u2−1⋅2​u+1⋅1
Agrupar términos semejantes=u4u2−2​u4u+1⋅u4+2​u3u2−2​2​u3u+1⋅2​u3+2u2u2−22​u2u+2⋅1⋅u2+2​u2u+1⋅u2−2​2​uu+1⋅2​u−1⋅2​u+1⋅1
Sumar elementos similares: 1⋅2​u−1⋅2​u=0=u4u2−2​u4u+1⋅u4+2​u3u2−2​2​u3u+1⋅2​u3+2u2u2−22​u2u+2⋅1⋅u2+2​u2u+1⋅u2−2​2​uu+1⋅1
Sumar elementos similares: −22​u2u+2​u2u=−2​u2u=u4u2−2​u4u+1⋅u4+2​u3u2−2​2​u3u+1⋅2​u3+2u2u2−2​u2u+2⋅1⋅u2+1⋅u2−2​2​uu+1⋅1
u4u2=u6
u4u2
Aplicar las leyes de los exponentes: ab⋅ac=ab+cu4u2=u4+2=u4+2
Sumar: 4+2=6=u6
2​u4u=2​u5
2​u4u
Aplicar las leyes de los exponentes: ab⋅ac=ab+cu4u=u4+1=2​u4+1
Sumar: 4+1=5=2​u5
1⋅u4=u4
1⋅u4
Multiplicar: 1⋅u4=u4=u4
2​u3u2=2​u5
2​u3u2
Aplicar las leyes de los exponentes: ab⋅ac=ab+cu3u2=u3+2=2​u3+2
Sumar: 3+2=5=2​u5
2​2​u3u=2u4
2​2​u3u
Aplicar las leyes de los exponentes: a​a​=a2​2​=2=2u3u
Aplicar las leyes de los exponentes: ab⋅ac=ab+cu3u=u3+1=2u3+1
Sumar: 3+1=4=2u4
1⋅2​u3=2​u3
1⋅2​u3
Multiplicar: 1⋅2​=2​=2​u3
2u2u2=2u4
2u2u2
Aplicar las leyes de los exponentes: ab⋅ac=ab+cu2u2=u2+2=2u2+2
Sumar: 2+2=4=2u4
2​u2u=2​u3
2​u2u
Aplicar las leyes de los exponentes: ab⋅ac=ab+cu2u=u2+1=2​u2+1
Sumar: 2+1=3=2​u3
2⋅1⋅u2=2u2
2⋅1⋅u2
Multiplicar los numeros: 2⋅1=2=2u2
1⋅u2=u2
1⋅u2
Multiplicar: 1⋅u2=u2=u2
2​2​uu=2u2
2​2​uu
Aplicar las leyes de los exponentes: a​a​=a2​2​=2=2uu
Aplicar las leyes de los exponentes: ab⋅ac=ab+cuu=u1+1=2u1+1
Sumar: 1+1=2=2u2
1⋅1=1
1⋅1
Multiplicar los numeros: 1⋅1=1=1
=u6−2​u5+u4+2​u5−2u4+2​u3+2u4−2​u3+2u2+u2−2u2+1
Agrupar términos semejantes=u6−2​u5+2​u5+u4−2u4+2u4+2​u3−2​u3+2u2+u2−2u2+1
Sumar elementos similares: 2​u3−2​u3=0=u6−2​u5+2​u5+u4−2u4+2u4+2u2+u2−2u2+1
Sumar elementos similares: −2​u5+2​u5=0=u6+u4−2u4+2u4+2u2+u2−2u2+1
Sumar elementos similares: 2u2+u2−2u2=u2=u6+u4−2u4+2u4+u2+1
Sumar elementos similares: u4−2u4+2u4=u4=u6+u4+u2+1
=u6+u4+u2+1
=u6+u4+u2+1
=10u5+10u+u6+u4+u2+1
3u6+3u4−3u2−3=10u5+10u+u6+u4+u2+1
Intercambiar lados10u5+10u+u6+u4+u2+1=3u6+3u4−3u2−3
Restar 3u6+3u4−3u2−3 de ambos lados10u5+10u+u6+u4+u2+1−(3u6+3u4−3u2−3)=3u6+3u4−3u2−3−(3u6+3u4−3u2−3)
Simplificar
10u5+10u+u6+u4+u2+1−(3u6+3u4−3u2−3)=3u6+3u4−3u2−3−(3u6+3u4−3u2−3)
Simplificar 10u5+10u+u6+u4+u2+1−(3u6+3u4−3u2−3):−2u6+10u5−2u4+4u2+10u+4
10u5+10u+u6+u4+u2+1−(3u6+3u4−3u2−3)
−(3u6+3u4−3u2−3):−3u6−3u4+3u2+3
−(3u6+3u4−3u2−3)
Poner los parentesis=−(3u6)−(3u4)−(−3u2)−(−3)
Aplicar las reglas de los signos−(−a)=a,−(a)=−a=−3u6−3u4+3u2+3
=10u5+10u+u6+u4+u2+1−3u6−3u4+3u2+3
Simplificar 10u5+10u+u6+u4+u2+1−3u6−3u4+3u2+3:−2u6+10u5−2u4+4u2+10u+4
10u5+10u+u6+u4+u2+1−3u6−3u4+3u2+3
Agrupar términos semejantes=u6−3u6+10u5+u4−3u4+u2+3u2+10u+1+3
Sumar elementos similares: u2+3u2=4u2=u6−3u6+10u5+u4−3u4+4u2+10u+1+3
Sumar elementos similares: u4−3u4=−2u4=u6−3u6+10u5−2u4+4u2+10u+1+3
Sumar elementos similares: u6−3u6=−2u6=−2u6+10u5−2u4+4u2+10u+1+3
Sumar: 1+3=4=−2u6+10u5−2u4+4u2+10u+4
=−2u6+10u5−2u4+4u2+10u+4
Simplificar 3u6+3u4−3u2−3−(3u6+3u4−3u2−3):0
3u6+3u4−3u2−3−(3u6+3u4−3u2−3)
Sumar elementos similares: 3u6+3u4−3u2−3−(3u6+3u4−3u2−3)=0
=0
−2u6+10u5−2u4+4u2+10u+4=0
−2u6+10u5−2u4+4u2+10u+4=0
Encontrar una solución para −2u6+10u5−2u4+4u2+10u+4=0 utilizando el método de Newton-Raphson:u≈−0.45284…
−2u6+10u5−2u4+4u2+10u+4=0
Definición del método de Newton-Raphson
f(u)=−2u6+10u5−2u4+4u2+10u+4
Hallar f′(u):−12u5+50u4−8u3+8u+10
dud​(−2u6+10u5−2u4+4u2+10u+4)
Aplicar la regla de la suma/diferencia: (f±g)′=f′±g′=−dud​(2u6)+dud​(10u5)−dud​(2u4)+dud​(4u2)+dud​(10u)+dud​(4)
dud​(2u6)=12u5
dud​(2u6)
Sacar la constante: (a⋅f)′=a⋅f′=2dud​(u6)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=2⋅6u6−1
Simplificar=12u5
dud​(10u5)=50u4
dud​(10u5)
Sacar la constante: (a⋅f)′=a⋅f′=10dud​(u5)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=10⋅5u5−1
Simplificar=50u4
dud​(2u4)=8u3
dud​(2u4)
Sacar la constante: (a⋅f)′=a⋅f′=2dud​(u4)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=2⋅4u4−1
Simplificar=8u3
dud​(4u2)=8u
dud​(4u2)
Sacar la constante: (a⋅f)′=a⋅f′=4dud​(u2)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=4⋅2u2−1
Simplificar=8u
dud​(10u)=10
dud​(10u)
Sacar la constante: (a⋅f)′=a⋅f′=10dudu​
Aplicar la regla de derivación: dudu​=1=10⋅1
Simplificar=10
dud​(4)=0
dud​(4)
Derivada de una constante: dxd​(a)=0=0
=−12u5+50u4−8u3+8u+10+0
Simplificar=−12u5+50u4−8u3+8u+10
Sea u0​=0Calcular un+1​ hasta que Δun+1​<0.000001
u1​=−0.4:Δu1​=0.4
f(u0​)=−2⋅06+10⋅05−2⋅04+4⋅02+10⋅0+4=4f′(u0​)=−12⋅05+50⋅04−8⋅03+8⋅0+10=10u1​=−0.4
Δu1​=∣−0.4−0∣=0.4Δu1​=0.4
u2​=−0.45487…:Δu2​=0.05487…
f(u1​)=−2(−0.4)6+10(−0.4)5−2(−0.4)4+4(−0.4)2+10(−0.4)+4=0.478208f′(u1​)=−12(−0.4)5+50(−0.4)4−8(−0.4)3+8(−0.4)+10=8.71488u2​=−0.45487…
Δu2​=∣−0.45487…−(−0.4)∣=0.05487…Δu2​=0.05487…
u3​=−0.45285…:Δu3​=0.00201…
f(u2​)=−2(−0.45487…)6+10(−0.45487…)5−2(−0.45487…)4+4(−0.45487…)2+10(−0.45487…)+4=−0.01916…f′(u2​)=−12(−0.45487…)5+50(−0.45487…)4−8(−0.45487…)3+8(−0.45487…)+10=9.48821…u3​=−0.45285…
Δu3​=∣−0.45285…−(−0.45487…)∣=0.00201…Δu3​=0.00201…
u4​=−0.45284…:Δu4​=3.93806E−6
f(u3​)=−2(−0.45285…)6+10(−0.45285…)5−2(−0.45285…)4+4(−0.45285…)2+10(−0.45285…)+4=−0.00003…f′(u3​)=−12(−0.45285…)5+50(−0.45285…)4−8(−0.45285…)3+8(−0.45285…)+10=9.45147…u4​=−0.45284…
Δu4​=∣−0.45284…−(−0.45285…)∣=3.93806E−6Δu4​=3.93806E−6
u5​=−0.45284…:Δu5​=1.47831E−11
f(u4​)=−2(−0.45284…)6+10(−0.45284…)5−2(−0.45284…)4+4(−0.45284…)2+10(−0.45284…)+4=−1.39721E−10f′(u4​)=−12(−0.45284…)5+50(−0.45284…)4−8(−0.45284…)3+8(−0.45284…)+10=9.45140…u5​=−0.45284…
Δu5​=∣−0.45284…−(−0.45284…)∣=1.47831E−11Δu5​=1.47831E−11
u≈−0.45284…
Aplicar la división larga Equation0:u+0.45284…−2u6+10u5−2u4+4u2+10u+4​=−2u5+10.90569…u4−6.93863…u3+3.14215…u2+2.57708…u+8.83297…
−2u5+10.90569…u4−6.93863…u3+3.14215…u2+2.57708…u+8.83297…≈0
Encontrar una solución para −2u5+10.90569…u4−6.93863…u3+3.14215…u2+2.57708…u+8.83297…=0 utilizando el método de Newton-Raphson:u≈4.82043…
−2u5+10.90569…u4−6.93863…u3+3.14215…u2+2.57708…u+8.83297…=0
Definición del método de Newton-Raphson
f(u)=−2u5+10.90569…u4−6.93863…u3+3.14215…u2+2.57708…u+8.83297…
Hallar f′(u):−10u4+43.62278…u3−20.81589…u2+6.28430…u+2.57708…
dud​(−2u5+10.90569…u4−6.93863…u3+3.14215…u2+2.57708…u+8.83297…)
Aplicar la regla de la suma/diferencia: (f±g)′=f′±g′=−dud​(2u5)+dud​(10.90569…u4)−dud​(6.93863…u3)+dud​(3.14215…u2)+dud​(2.57708…u)+dud​(8.83297…)
dud​(2u5)=10u4
dud​(2u5)
Sacar la constante: (a⋅f)′=a⋅f′=2dud​(u5)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=2⋅5u5−1
Simplificar=10u4
dud​(10.90569…u4)=43.62278…u3
dud​(10.90569…u4)
Sacar la constante: (a⋅f)′=a⋅f′=10.90569…dud​(u4)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=10.90569…⋅4u4−1
Simplificar=43.62278…u3
dud​(6.93863…u3)=20.81589…u2
dud​(6.93863…u3)
Sacar la constante: (a⋅f)′=a⋅f′=6.93863…dud​(u3)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=6.93863…⋅3u3−1
Simplificar=20.81589…u2
dud​(3.14215…u2)=6.28430…u
dud​(3.14215…u2)
Sacar la constante: (a⋅f)′=a⋅f′=3.14215…dud​(u2)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=3.14215…⋅2u2−1
Simplificar=6.28430…u
dud​(2.57708…u)=2.57708…
dud​(2.57708…u)
Sacar la constante: (a⋅f)′=a⋅f′=2.57708…dudu​
Aplicar la regla de derivación: dudu​=1=2.57708…⋅1
Simplificar=2.57708…
dud​(8.83297…)=0
dud​(8.83297…)
Derivada de una constante: dxd​(a)=0=0
=−10u4+43.62278…u3−20.81589…u2+6.28430…u+2.57708…+0
Simplificar=−10u4+43.62278…u3−20.81589…u2+6.28430…u+2.57708…
Sea u0​=−2Calcular un+1​ hasta que Δun+1​<0.000001
u1​=−1.48484…:Δu1​=0.51515…
f(u0​)=−2(−2)5+10.90569…(−2)4−6.93863…(−2)3+3.14215…(−2)2+2.57708…(−2)+8.83297…=310.24761…f′(u0​)=−10(−2)4+43.62278…(−2)3−20.81589…(−2)2+6.28430…(−2)+2.57708…=−602.23740…u1​=−1.48484…
Δu1​=∣−1.48484…−(−2)∣=0.51515…Δu1​=0.51515…
u2​=−1.06652…:Δu2​=0.41831…
f(u1​)=−2(−1.48484…)5+10.90569…(−1.48484…)4−6.93863…(−1.48484…)3+3.14215…(−1.48484…)2+2.57708…(−1.48484…)+8.83297…=102.09660…f′(u1​)=−10(−1.48484…)4+43.62278…(−1.48484…)3−20.81589…(−1.48484…)2+6.28430…(−1.48484…)+2.57708…=−244.06592…u2​=−1.06652…
Δu2​=∣−1.06652…−(−1.48484…)∣=0.41831…Δu2​=0.41831…
u3​=−0.69341…:Δu3​=0.37311…
f(u2​)=−2(−1.06652…)5+10.90569…(−1.06652…)4−6.93863…(−1.06652…)3+3.14215…(−1.06652…)2+2.57708…(−1.06652…)+8.83297…=34.94642…f′(u2​)=−10(−1.06652…)4+43.62278…(−1.06652…)3−20.81589…(−1.06652…)2+6.28430…(−1.06652…)+2.57708…=−93.66242…u3​=−0.69341…
Δu3​=∣−0.69341…−(−1.06652…)∣=0.37311…Δu3​=0.37311…
u4​=−0.21473…:Δu4​=0.47868…
f(u3​)=−2(−0.69341…)5+10.90569…(−0.69341…)4−6.93863…(−0.69341…)3+3.14215…(−0.69341…)2+2.57708…(−0.69341…)+8.83297…=13.71217…f′(u3​)=−10(−0.69341…)4+43.62278…(−0.69341…)3−20.81589…(−0.69341…)2+6.28430…(−0.69341…)+2.57708…=−28.64562…u4​=−0.21473…
Δu4​=∣−0.21473…−(−0.69341…)∣=0.47868…Δu4​=0.47868…
u5​=45.73243…:Δu5​=45.94716…
f(u4​)=−2(−0.21473…)5+10.90569…(−0.21473…)4−6.93863…(−0.21473…)3+3.14215…(−0.21473…)2+2.57708…(−0.21473…)+8.83297…=8.51727…f′(u4​)=−10(−0.21473…)4+43.62278…(−0.21473…)3−20.81589…(−0.21473…)2+6.28430…(−0.21473…)+2.57708…=−0.18537…u5​=45.73243…
Δu5​=∣45.73243…−(−0.21473…)∣=45.94716…Δu5​=45.94716…
u6​=36.82019…:Δu6​=8.91223…
f(u5​)=−2⋅45.73243…5+10.90569…⋅45.73243…4−6.93863…⋅45.73243…3+3.14215…⋅45.73243…2+2.57708…⋅45.73243…+8.83297…=−353037842.88944…f′(u5​)=−10⋅45.73243…4+43.62278…⋅45.73243…3−20.81589…⋅45.73243…2+6.28430…⋅45.73243…+2.57708…=−39612709.25671…u6​=36.82019…
Δu6​=∣36.82019…−45.73243…∣=8.91223…Δu6​=8.91223…
u7​=29.69478…:Δu7​=7.12541…
f(u6​)=−2⋅36.82019…5+10.90569…⋅36.82019…4−6.93863…⋅36.82019…3+3.14215…⋅36.82019…2+2.57708…⋅36.82019…+8.83297…=−115648118.63564…f′(u6​)=−10⋅36.82019…4+43.62278…⋅36.82019…3−20.81589…⋅36.82019…2+6.28430…⋅36.82019…+2.57708…=−16230376.60275…u7​=29.69478…
Δu7​=∣29.69478…−36.82019…∣=7.12541…Δu7​=7.12541…
u8​=24.00013…:Δu8​=5.69464…
f(u7​)=−2⋅29.69478…5+10.90569…⋅29.69478…4−6.93863…⋅29.69478…3+3.14215…⋅29.69478…2+2.57708…⋅29.69478…+8.83297…=−37876817.50021…f′(u7​)=−10⋅29.69478…4+43.62278…⋅29.69478…3−20.81589…⋅29.69478…2+6.28430…⋅29.69478…+2.57708…=−6651300.86677…u8​=24.00013…
Δu8​=∣24.00013…−29.69478…∣=5.69464…Δu8​=5.69464…
u9​=19.45186…:Δu9​=4.54827…
f(u8​)=−2⋅24.00013…5+10.90569…⋅24.00013…4−6.93863…⋅24.00013…3+3.14215…⋅24.00013…2+2.57708…⋅24.00013…+8.83297…=−12401417.47322…f′(u8​)=−10⋅24.00013…4+43.62278…⋅24.00013…3−20.81589…⋅24.00013…2+6.28430…⋅24.00013…+2.57708…=−2726621.64422…u9​=19.45186…
Δu9​=∣19.45186…−24.00013…∣=4.54827…Δu9​=4.54827…
u10​=15.82312…:Δu10​=3.62873…
f(u9​)=−2⋅19.45186…5+10.90569…⋅19.45186…4−6.93863…⋅19.45186…3+3.14215…⋅19.45186…2+2.57708…⋅19.45186…+8.83297…=−4058236.53789…f′(u9​)=−10⋅19.45186…4+43.62278…⋅19.45186…3−20.81589…⋅19.45186…2+6.28430…⋅19.45186…+2.57708…=−1118360.52689…u10​=15.82312…
Δu10​=∣15.82312…−19.45186…∣=3.62873…Δu10​=3.62873…
u11​=12.93345…:Δu11​=2.88967…
f(u10​)=−2⋅15.82312…5+10.90569…⋅15.82312…4−6.93863…⋅15.82312…3+3.14215…⋅15.82312…2+2.57708…⋅15.82312…+8.83297…=−1326791.95496…f′(u10​)=−10⋅15.82312…4+43.62278…⋅15.82312…3−20.81589…⋅15.82312…2+6.28430…⋅15.82312…+2.57708…=−459149.56948…u11​=12.93345…
Δu11​=∣12.93345…−15.82312…∣=2.88967…Δu11​=2.88967…
u12​=10.64002…:Δu12​=2.29343…
f(u11​)=−2⋅12.93345…5+10.90569…⋅12.93345…4−6.93863…⋅12.93345…3+3.14215…⋅12.93345…2+2.57708…⋅12.93345…+8.83297…=−433068.72392…f′(u11​)=−10⋅12.93345…4+43.62278…⋅12.93345…3−20.81589…⋅12.93345…2+6.28430…⋅12.93345…+2.57708…=−188829.97467…u12​=10.64002…
Δu12​=∣10.64002…−12.93345…∣=2.29343…Δu12​=2.29343…
u13​=8.83106…:Δu13​=1.80895…
f(u12​)=−2⋅10.64002…5+10.90569…⋅10.64002…4−6.93863…⋅10.64002…3+3.14215…⋅10.64002…2+2.57708…⋅10.64002…+8.83297…=−140929.23683…f′(u12​)=−10⋅10.64002…4+43.62278…⋅10.64002…3−20.81589…⋅10.64002…2+6.28430…⋅10.64002…+2.57708…=−77906.25228…u13​=8.83106…
Δu13​=∣8.83106…−10.64002…∣=1.80895…Δu13​=1.80895…
u14​=7.42130…:Δu14​=1.40976…
f(u13​)=−2⋅8.83106…5+10.90569…⋅8.83106…4−6.93863…⋅8.83106…3+3.14215…⋅8.83106…2+2.57708…⋅8.83106…+8.83297…=−45595.29435…f′(u13​)=−10⋅8.83106…4+43.62278…⋅8.83106…3−20.81589…⋅8.83106…2+6.28430…⋅8.83106…+2.57708…=−32342.49741…u14​=7.42130…
Δu14​=∣7.42130…−8.83106…∣=1.40976…Δu14​=1.40976…
u15​=6.34950…:Δu15​=1.07179…
f(u14​)=−2⋅7.42130…5+10.90569…⋅7.42130…4−6.93863…⋅7.42130…3+3.14215…⋅7.42130…2+2.57708…⋅7.42130…+8.83297…=−14576.98569…f′(u14​)=−10⋅7.42130…4+43.62278…⋅7.42130…3−20.81589…⋅7.42130…2+6.28430…⋅7.42130…+2.57708…=−13600.48355…u15​=6.34950…
Δu15​=∣6.34950…−7.42130…∣=1.07179…Δu15​=1.07179…
u16​=5.57803…:Δu16​=0.77146…
f(u15​)=−2⋅6.34950…5+10.90569…⋅6.34950…4−6.93863…⋅6.34950…3+3.14215…⋅6.34950…2+2.57708…⋅6.34950…+8.83297…=−4539.15945…f′(u15​)=−10⋅6.34950…4+43.62278…⋅6.34950…3−20.81589…⋅6.34950…2+6.28430…⋅6.34950…+2.57708…=−5883.78460…u16​=5.57803…
Δu16​=∣5.57803…−6.34950…∣=0.77146…Δu16​=0.77146…
u17​=5.09067…:Δu17​=0.48736…
f(u16​)=−2⋅5.57803…5+10.90569…⋅5.57803…4−6.93863…⋅5.57803…3+3.14215…⋅5.57803…2+2.57708…⋅5.57803…+8.83297…=−1325.66062…f′(u16​)=−10⋅5.57803…4+43.62278…⋅5.57803…3−20.81589…⋅5.57803…2+6.28430…⋅5.57803…+2.57708…=−2720.07531…u17​=5.09067…
Δu17​=∣5.09067…−5.57803…∣=0.48736…Δu17​=0.48736…
u18​=4.86858…:Δu18​=0.22208…
f(u17​)=−2⋅5.09067…5+10.90569…⋅5.09067…4−6.93863…⋅5.09067…3+3.14215…⋅5.09067…2+2.57708…⋅5.09067…+8.83297…=−325.52900…f′(u17​)=−10⋅5.09067…4+43.62278…⋅5.09067…3−20.81589…⋅5.09067…2+6.28430…⋅5.09067…+2.57708…=−1465.80116…u18​=4.86858…
Δu18​=∣4.86858…−5.09067…∣=0.22208…Δu18​=0.22208…
u19​=4.82230…:Δu19​=0.04628…
f(u18​)=−2⋅4.86858…5+10.90569…⋅4.86858…4−6.93863…⋅4.86858…3+3.14215…⋅4.86858…2+2.57708…⋅4.86858…+8.83297…=−48.34478…f′(u18​)=−10⋅4.86858…4+43.62278…⋅4.86858…3−20.81589…⋅4.86858…2+6.28430…⋅4.86858…+2.57708…=−1044.51538…u19​=4.82230…
Δu19​=∣4.82230…−4.86858…∣=0.04628…Δu19​=0.04628…
u20​=4.82043…:Δu20​=0.00186…
f(u19​)=−2⋅4.82230…5+10.90569…⋅4.82230…4−6.93863…⋅4.82230…3+3.14215…⋅4.82230…2+2.57708…⋅4.82230…+8.83297…=−1.80563…f′(u19​)=−10⋅4.82230…4+43.62278…⋅4.82230…3−20.81589…⋅4.82230…2+6.28430…⋅4.82230…+2.57708…=−967.05976…u20​=4.82043…
Δu20​=∣4.82043…−4.82230…∣=0.00186…Δu20​=0.00186…
u21​=4.82043…:Δu21​=2.95792E−6
f(u20​)=−2⋅4.82043…5+10.90569…⋅4.82043…4−6.93863…⋅4.82043…3+3.14215…⋅4.82043…2+2.57708…⋅4.82043…+8.83297…=−0.00285…f′(u20​)=−10⋅4.82043…4+43.62278…⋅4.82043…3−20.81589…⋅4.82043…2+6.28430…⋅4.82043…+2.57708…=−964.00633…u21​=4.82043…
Δu21​=∣4.82043…−4.82043…∣=2.95792E−6Δu21​=2.95792E−6
u22​=4.82043…:Δu22​=7.4149E−12
f(u21​)=−2⋅4.82043…5+10.90569…⋅4.82043…4−6.93863…⋅4.82043…3+3.14215…⋅4.82043…2+2.57708…⋅4.82043…+8.83297…=−7.14797E−9f′(u21​)=−10⋅4.82043…4+43.62278…⋅4.82043…3−20.81589…⋅4.82043…2+6.28430…⋅4.82043…+2.57708…=−964.00149…u22​=4.82043…
Δu22​=∣4.82043…−4.82043…∣=7.4149E−12Δu22​=7.4149E−12
u≈4.82043…
Aplicar la división larga Equation0:u−4.82043…−2u5+10.90569…u4−6.93863…u3+3.14215…u2+2.57708…u+8.83297…​=−2u4+1.26482…u3−0.84160…u2−0.91474…u−1.83240…
−2u4+1.26482…u3−0.84160…u2−0.91474…u−1.83240…≈0
Encontrar una solución para −2u4+1.26482…u3−0.84160…u2−0.91474…u−1.83240…=0 utilizando el método de Newton-Raphson:Sin solución para u∈R
−2u4+1.26482…u3−0.84160…u2−0.91474…u−1.83240…=0
Definición del método de Newton-Raphson
f(u)=−2u4+1.26482…u3−0.84160…u2−0.91474…u−1.83240…
Hallar f′(u):−8u3+3.79448…u2−1.68320…u−0.91474…
dud​(−2u4+1.26482…u3−0.84160…u2−0.91474…u−1.83240…)
Aplicar la regla de la suma/diferencia: (f±g)′=f′±g′=−dud​(2u4)+dud​(1.26482…u3)−dud​(0.84160…u2)−dud​(0.91474…u)−dud​(1.83240…)
dud​(2u4)=8u3
dud​(2u4)
Sacar la constante: (a⋅f)′=a⋅f′=2dud​(u4)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=2⋅4u4−1
Simplificar=8u3
dud​(1.26482…u3)=3.79448…u2
dud​(1.26482…u3)
Sacar la constante: (a⋅f)′=a⋅f′=1.26482…dud​(u3)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=1.26482…⋅3u3−1
Simplificar=3.79448…u2
dud​(0.84160…u2)=1.68320…u
dud​(0.84160…u2)
Sacar la constante: (a⋅f)′=a⋅f′=0.84160…dud​(u2)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=0.84160…⋅2u2−1
Simplificar=1.68320…u
dud​(0.91474…u)=0.91474…
dud​(0.91474…u)
Sacar la constante: (a⋅f)′=a⋅f′=0.91474…dudu​
Aplicar la regla de derivación: dudu​=1=0.91474…⋅1
Simplificar=0.91474…
dud​(1.83240…)=0
dud​(1.83240…)
Derivada de una constante: dxd​(a)=0=0
=−8u3+3.79448…u2−1.68320…u−0.91474…−0
Simplificar=−8u3+3.79448…u2−1.68320…u−0.91474…
Sea u0​=−2Calcular un+1​ hasta que Δun+1​<0.000001
u1​=−1.44275…:Δu1​=0.55724…
f(u0​)=−2(−2)4+1.26482…(−2)3−0.84160…(−2)2−0.91474…(−2)−1.83240…=−45.48795…f′(u0​)=−8(−2)3+3.79448…(−2)2−1.68320…(−2)−0.91474…=81.62962…u1​=−1.44275…
Δu1​=∣−1.44275…−(−2)∣=0.55724…Δu1​=0.55724…
u2​=−1.00226…:Δu2​=0.44048…
f(u1​)=−2(−1.44275…)4+1.26482…(−1.44275…)3−0.84160…(−1.44275…)2−0.91474…(−1.44275…)−1.83240…=−14.72848…f′(u1​)=−8(−1.44275…)3+3.79448…(−1.44275…)2−1.68320…(−1.44275…)−0.91474…=33.43713…u2​=−1.00226…
Δu2​=∣−1.00226…−(−1.44275…)∣=0.44048…Δu2​=0.44048…
u3​=−0.60248…:Δu3​=0.39978…
f(u2​)=−2(−1.00226…)4+1.26482…(−1.00226…)3−0.84160…(−1.00226…)2−0.91474…(−1.00226…)−1.83240…=−5.05267…f′(u2​)=−8(−1.00226…)3+3.79448…(−1.00226…)2−1.68320…(−1.00226…)−0.91474…=12.63858…u3​=−0.60248…
Δu3​=∣−0.60248…−(−1.00226…)∣=0.39978…Δu3​=0.39978…
u4​=0.05675…:Δu4​=0.65924…
f(u3​)=−2(−0.60248…)4+1.26482…(−0.60248…)3−0.84160…(−0.60248…)2−0.91474…(−0.60248…)−1.83240…=−2.12691…f′(u3​)=−8(−0.60248…)3+3.79448…(−0.60248…)2−1.68320…(−0.60248…)−0.91474…=3.22630…u4​=0.05675…
Δu4​=∣0.05675…−(−0.60248…)∣=0.65924…Δu4​=0.65924…
u5​=−1.83097…:Δu5​=1.88772…
f(u4​)=−2⋅0.05675…4+1.26482…⋅0.05675…3−0.84160…⋅0.05675…2−0.91474…⋅0.05675…−1.83240…=−1.88681…f′(u4​)=−8⋅0.05675…3+3.79448…⋅0.05675…2−1.68320…⋅0.05675…−0.91474…=−0.99951…u5​=−1.83097…
Δu5​=∣−1.83097…−0.05675…∣=1.88772…Δu5​=1.88772…
u6​=−1.31185…:Δu6​=0.51912…
f(u5​)=−2(−1.83097…)4+1.26482…(−1.83097…)3−0.84160…(−1.83097…)2−0.91474…(−1.83097…)−1.83240…=−33.22099…f′(u5​)=−8(−1.83097…)3+3.79448…(−1.83097…)2−1.68320…(−1.83097…)−0.91474…=63.99442…u6​=−1.31185…
Δu6​=∣−1.31185…−(−1.83097…)∣=0.51912…Δu6​=0.51912…
u7​=−0.89231…:Δu7​=0.41954…
f(u6​)=−2(−1.31185…)4+1.26482…(−1.31185…)3−0.84160…(−1.31185…)2−0.91474…(−1.31185…)−1.83240…=−10.85966…f′(u6​)=−8(−1.31185…)3+3.79448…(−1.31185…)2−1.68320…(−1.31185…)−0.91474…=25.88464…u7​=−0.89231…
Δu7​=∣−0.89231…−(−1.31185…)∣=0.41954…Δu7​=0.41954…
u8​=−0.47768…:Δu8​=0.41462…
f(u7​)=−2(−0.89231…)4+1.26482…(−0.89231…)3−0.84160…(−0.89231…)2−0.91474…(−0.89231…)−1.83240…=−3.85282…f′(u7​)=−8(−0.89231…)3+3.79448…(−0.89231…)2−1.68320…(−0.89231…)−0.91474…=9.29225…u8​=−0.47768…
Δu8​=∣−0.47768…−(−0.89231…)∣=0.41462…Δu8​=0.41462…
u9​=0.64668…:Δu9​=1.12436…
f(u8​)=−2(−0.47768…)4+1.26482…(−0.47768…)3−0.84160…(−0.47768…)2−0.91474…(−0.47768…)−1.83240…=−1.82947…f′(u8​)=−8(−0.47768…)3+3.79448…(−0.47768…)2−1.68320…(−0.47768…)−0.91474…=1.62711…u9​=0.64668…
Δu9​=∣0.64668…−(−0.47768…)∣=1.12436…Δu9​=1.12436…
u10​=−0.43226…:Δu10​=1.07894…
f(u9​)=−2⋅0.64668…4+1.26482…⋅0.64668…3−0.84160…⋅0.64668…2−0.91474…⋅0.64668…−1.83240…=−2.78363…f′(u9​)=−8⋅0.64668…3+3.79448…⋅0.64668…2−1.68320…⋅0.64668…−0.91474…=−2.57995…u10​=−0.43226…
Δu10​=∣−0.43226…−0.64668…∣=1.07894…Δu10​=1.07894…
u11​=1.07993…:Δu11​=1.51219…
f(u10​)=−2(−0.43226…)4+1.26482…(−0.43226…)3−0.84160…(−0.43226…)2−0.91474…(−0.43226…)−1.83240…=−1.76622…f′(u10​)=−8(−0.43226…)3+3.79448…(−0.43226…)2−1.68320…(−0.43226…)−0.91474…=1.16798…u11​=1.07993…
Δu11​=∣1.07993…−(−0.43226…)∣=1.51219…Δu11​=1.51219…
No se puede encontrar solución
Las soluciones sonu≈−0.45284…,u≈4.82043…
u≈−0.45284…,u≈4.82043…
Verificar las soluciones
Encontrar los puntos no definidos (singularidades):u=0
Tomar el(los) denominador(es) de 3u2+u−2u2−u−2​ y comparar con cero
Resolver u2=0:u=0
u2=0
Aplicar la regla xn=0⇒x=0
u=0
Tomar el(los) denominador(es) de 5u+u−12​+1 y comparar con cero
u=0
Los siguientes puntos no están definidosu=0
Combinar los puntos no definidos con las soluciones:
u≈−0.45284…,u≈4.82043…
u≈−0.45284…,u≈4.82043…
Sustituir hacia atrás la u=eθ,resolver para θ
Resolver eθ=−0.45284…:Sin solución para θ∈R
eθ=−0.45284…
af(θ) no puede ser cero o negativo para θ∈RSinsolucioˊnparaθ∈R
Resolver eθ=4.82043…:θ=ln(4.82043…)
eθ=4.82043…
Aplicar las leyes de los exponentes
eθ=4.82043…
Si f(x)=g(x), entonces ln(f(x))=ln(g(x))ln(eθ)=ln(4.82043…)
Aplicar las propiedades de los logaritmos: ln(ea)=aln(eθ)=θθ=ln(4.82043…)
θ=ln(4.82043…)
θ=ln(4.82043…)
θ=ln(4.82043…)

Gráfica

Sorry, your browser does not support this application
Ver gráfico interactivo

Ejemplos populares

2cos^2(θ)+cos(θ)=1tan(x)sin(x)-sin(x)=02sin(x)=csc(x)1+tan(x)=sec(x)sin(2x)=cos(60)
Herramientas de estudioSolucionador Matemático de IAProblemas popularesHojas de trabajoPracticaHojas de referenciaCalculadorasCalculadora gráficaCalculadora de GeometríaVerificar solución
AplicacionesAplicación Symbolab (Android)Calculadora gráfica (Android)Practica (Android)Aplicación Symbolab (iOS)Calculadora gráfica (iOS)Practica (iOS)Extensión de ChromeSymbolab Math Solver API
EmpresaAcerca de SymbolabBlogAyuda
LegalPrivacidadTérminosPolítica de cookiesConfiguración de CookiesNo vendas ni compartas mi información personalCopyright, Guías Comunitarias, DSA & otros recursos legalesCentro Legal de Learneo
Redes sociales
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024