Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

cos(x)=sin(x/2)

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

cos(x)=sin(2x​)

Lösung

x=3π+4πn,x=3π​+4πn,x=35π​+4πn
+1
Grad
x=540∘+720∘n,x=60∘+720∘n,x=300∘+720∘n
Schritte zur Lösung
cos(x)=sin(2x​)
Subtrahiere sin(2x​) von beiden Seitencos(x)−sin(2x​)=0
Angenommen: u=2x​cos(2u)−sin(u)=0
Umschreiben mit Hilfe von Trigonometrie-Identitäten
cos(2u)−sin(u)
Verwende die Doppelwinkelidentität: cos(2x)=1−2sin2(x)=1−2sin2(u)−sin(u)
1−sin(u)−2sin2(u)=0
Löse mit Substitution
1−sin(u)−2sin2(u)=0
Angenommen: sin(u)=u1−u−2u2=0
1−u−2u2=0:u=−1,u=21​
1−u−2u2=0
Schreibe in der Standard Form ax2+bx+c=0−2u2−u+1=0
Löse mit der quadratischen Formel
−2u2−u+1=0
Quadratische Formel für Gliechungen:
Für a=−2,b=−1,c=1u1,2​=2(−2)−(−1)±(−1)2−4(−2)⋅1​​
u1,2​=2(−2)−(−1)±(−1)2−4(−2)⋅1​​
(−1)2−4(−2)⋅1​=3
(−1)2−4(−2)⋅1​
Wende Regel an −(−a)=a=(−1)2+4⋅2⋅1​
(−1)2=1
(−1)2
Wende Exponentenregel an: (−a)n=an,wenn n gerade ist(−1)2=12=12
Wende Regel an 1a=1=1
4⋅2⋅1=8
4⋅2⋅1
Multipliziere die Zahlen: 4⋅2⋅1=8=8
=1+8​
Addiere die Zahlen: 1+8=9=9​
Faktorisiere die Zahl: 9=32=32​
Wende Radikal Regel an: nan​=a32​=3=3
u1,2​=2(−2)−(−1)±3​
Trenne die Lösungenu1​=2(−2)−(−1)+3​,u2​=2(−2)−(−1)−3​
u=2(−2)−(−1)+3​:−1
2(−2)−(−1)+3​
Entferne die Klammern: (−a)=−a,−(−a)=a=−2⋅21+3​
Addiere die Zahlen: 1+3=4=−2⋅24​
Multipliziere die Zahlen: 2⋅2=4=−44​
Wende Bruchregel an: −ba​=−ba​=−44​
Wende Regel an aa​=1=−1
u=2(−2)−(−1)−3​:21​
2(−2)−(−1)−3​
Entferne die Klammern: (−a)=−a,−(−a)=a=−2⋅21−3​
Subtrahiere die Zahlen: 1−3=−2=−2⋅2−2​
Multipliziere die Zahlen: 2⋅2=4=−4−2​
Wende Bruchregel an: −b−a​=ba​=42​
Streiche die gemeinsamen Faktoren: 2=21​
Die Lösungen für die quadratische Gleichung sind: u=−1,u=21​
Setze in u=sin(u)einsin(u)=−1,sin(u)=21​
sin(u)=−1,sin(u)=21​
sin(u)=−1:u=23π​+2πn
sin(u)=−1
Allgemeine Lösung für sin(u)=−1
sin(x) Periodizitätstabelle mit 2πn Zyklus:
u=23π​+2πn
u=23π​+2πn
sin(u)=21​:u=6π​+2πn,u=65π​+2πn
sin(u)=21​
Allgemeine Lösung für sin(u)=21​
sin(x) Periodizitätstabelle mit 2πn Zyklus:
u=6π​+2πn,u=65π​+2πn
u=6π​+2πn,u=65π​+2πn
Kombiniere alle Lösungenu=23π​+2πn,u=6π​+2πn,u=65π​+2πn
Setze in u=2x​ein
2x​=23π​+2πn:x=3π+4πn
2x​=23π​+2πn
Multipliziere beide Seiten mit 2
2x​=23π​+2πn
Multipliziere beide Seiten mit 222x​=2⋅23π​+2⋅2πn
Vereinfache
22x​=2⋅23π​+2⋅2πn
Vereinfache 22x​:x
22x​
Teile die Zahlen: 22​=1=x
Vereinfache 2⋅23π​+2⋅2πn:3π+4πn
2⋅23π​+2⋅2πn
2⋅23π​=3π
2⋅23π​
Multipliziere Brüche: a⋅cb​=ca⋅b​=23π2​
Streiche die gemeinsamen Faktoren: 2=3π
2⋅2πn=4πn
2⋅2πn
Multipliziere die Zahlen: 2⋅2=4=4πn
=3π+4πn
x=3π+4πn
x=3π+4πn
x=3π+4πn
2x​=6π​+2πn:x=3π​+4πn
2x​=6π​+2πn
Multipliziere beide Seiten mit 2
2x​=6π​+2πn
Multipliziere beide Seiten mit 222x​=2⋅6π​+2⋅2πn
Vereinfache
22x​=2⋅6π​+2⋅2πn
Vereinfache 22x​:x
22x​
Teile die Zahlen: 22​=1=x
Vereinfache 2⋅6π​+2⋅2πn:3π​+4πn
2⋅6π​+2⋅2πn
2⋅6π​=3π​
2⋅6π​
Multipliziere Brüche: a⋅cb​=ca⋅b​=6π2​
Streiche die gemeinsamen Faktoren: 2=3π​
2⋅2πn=4πn
2⋅2πn
Multipliziere die Zahlen: 2⋅2=4=4πn
=3π​+4πn
x=3π​+4πn
x=3π​+4πn
x=3π​+4πn
2x​=65π​+2πn:x=35π​+4πn
2x​=65π​+2πn
Multipliziere beide Seiten mit 2
2x​=65π​+2πn
Multipliziere beide Seiten mit 222x​=2⋅65π​+2⋅2πn
Vereinfache
22x​=2⋅65π​+2⋅2πn
Vereinfache 22x​:x
22x​
Teile die Zahlen: 22​=1=x
Vereinfache 2⋅65π​+2⋅2πn:35π​+4πn
2⋅65π​+2⋅2πn
2⋅65π​=35π​
2⋅65π​
Multipliziere Brüche: a⋅cb​=ca⋅b​=65π2​
Multipliziere die Zahlen: 5⋅2=10=610π​
Streiche die gemeinsamen Faktoren: 2=35π​
2⋅2πn=4πn
2⋅2πn
Multipliziere die Zahlen: 2⋅2=4=4πn
=35π​+4πn
x=35π​+4πn
x=35π​+4πn
x=35π​+4πn
x=3π+4πn,x=3π​+4πn,x=35π​+4πn

Graph

Sorry, your browser does not support this application
Interaktives Diagramm anzeigen

Beliebte Beispiele

tan(θ)=0.5tan(θ)=0.5-sqrt(3)tan(θ)-6=-3−3​tan(θ)−6=−3tan(θ)=2.5tan(θ)=2.5arccos(1-x)+arccos(x)=arccos(-x)arccos(1−x)+arccos(x)=arccos(−x)tan(x)=0.75tan(x)=0.75
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024