Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

4cosh(x)-sinh(x)=8

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

4cosh(x)−sinh(x)=8

Solution

x=ln(5),x=−ln(3)
+1
Degrees
x=92.21399…∘,x=−62.94584…∘
Solution steps
4cosh(x)−sinh(x)=8
Rewrite using trig identities
4cosh(x)−sinh(x)=8
Use the Hyperbolic identity: sinh(x)=2ex−e−x​4cosh(x)−2ex−e−x​=8
Use the Hyperbolic identity: cosh(x)=2ex+e−x​4⋅2ex+e−x​−2ex−e−x​=8
4⋅2ex+e−x​−2ex−e−x​=8
4⋅2ex+e−x​−2ex−e−x​=8:x=ln(5),x=−ln(3)
4⋅2ex+e−x​−2ex−e−x​=8
Multiply both sides by 24⋅2ex+e−x​⋅2−2ex−e−x​⋅2=8⋅2
Simplify4(ex+e−x)−(ex−e−x)=16
Apply exponent rules
4(ex+e−x)−(ex−e−x)=16
Apply exponent rule: abc=(ab)ce−x=(ex)−14(ex+(ex)−1)−(ex−(ex)−1)=16
4(ex+(ex)−1)−(ex−(ex)−1)=16
Rewrite the equation with ex=u4(u+(u)−1)−(u−(u)−1)=16
Solve 4(u+u−1)−(u−u−1)=16:u=5,u=31​
4(u+u−1)−(u−u−1)=16
Refine4(u+u1​)−(u−u1​)=16
Simplify −(u−u1​):−u+u1​
−(u−u1​)
Distribute parentheses=−(u)−(−u1​)
Apply minus-plus rules−(−a)=a,−(a)=−a=−u+u1​
4(u+u1​)−u+u1​=16
Multiply both sides by u
4(u+u1​)−u+u1​=16
Multiply both sides by u4(u+u1​)u−uu+u1​u=16u
Simplify
4(u+u1​)u−uu+u1​u=16u
Simplify −uu:−u2
−uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=−u1+1
Add the numbers: 1+1=2=−u2
Simplify u1​u:1
u1​u
Multiply fractions: a⋅cb​=ca⋅b​=u1⋅u​
Cancel the common factor: u=1
4(u+u1​)u−u2+1=16u
4(u+u1​)u−u2+1=16u
4(u+u1​)u−u2+1=16u
Expand 4(u+u1​)u−u2+1:3u2+5
4(u+u1​)u−u2+1
=4u(u+u1​)−u2+1
Expand 4u(u+u1​):4u2+4
4u(u+u1​)
Apply the distributive law: a(b+c)=ab+aca=4u,b=u,c=u1​=4uu+4uu1​
=4uu+4⋅u1​u
Simplify 4uu+4⋅u1​u:4u2+4
4uu+4⋅u1​u
4uu=4u2
4uu
Apply exponent rule: ab⋅ac=ab+cuu=u1+1=4u1+1
Add the numbers: 1+1=2=4u2
4⋅u1​u=4
4⋅u1​u
Multiply fractions: a⋅cb​=ca⋅b​=u1⋅4u​
Cancel the common factor: u=1⋅4
Multiply the numbers: 1⋅4=4=4
=4u2+4
=4u2+4
=4u2+4−u2+1
Simplify 4u2+4−u2+1:3u2+5
4u2+4−u2+1
Group like terms=4u2−u2+4+1
Add similar elements: 4u2−u2=3u2=3u2+4+1
Add the numbers: 4+1=5=3u2+5
=3u2+5
3u2+5=16u
Solve 3u2+5=16u:u=5,u=31​
3u2+5=16u
Move 16uto the left side
3u2+5=16u
Subtract 16u from both sides3u2+5−16u=16u−16u
Simplify3u2+5−16u=0
3u2+5−16u=0
Write in the standard form ax2+bx+c=03u2−16u+5=0
Solve with the quadratic formula
3u2−16u+5=0
Quadratic Equation Formula:
For a=3,b=−16,c=5u1,2​=2⋅3−(−16)±(−16)2−4⋅3⋅5​​
u1,2​=2⋅3−(−16)±(−16)2−4⋅3⋅5​​
(−16)2−4⋅3⋅5​=14
(−16)2−4⋅3⋅5​
Apply exponent rule: (−a)n=an,if n is even(−16)2=162=162−4⋅3⋅5​
Multiply the numbers: 4⋅3⋅5=60=162−60​
162=256=256−60​
Subtract the numbers: 256−60=196=196​
Factor the number: 196=142=142​
Apply radical rule: 142​=14=14
u1,2​=2⋅3−(−16)±14​
Separate the solutionsu1​=2⋅3−(−16)+14​,u2​=2⋅3−(−16)−14​
u=2⋅3−(−16)+14​:5
2⋅3−(−16)+14​
Apply rule −(−a)=a=2⋅316+14​
Add the numbers: 16+14=30=2⋅330​
Multiply the numbers: 2⋅3=6=630​
Divide the numbers: 630​=5=5
u=2⋅3−(−16)−14​:31​
2⋅3−(−16)−14​
Apply rule −(−a)=a=2⋅316−14​
Subtract the numbers: 16−14=2=2⋅32​
Multiply the numbers: 2⋅3=6=62​
Cancel the common factor: 2=31​
The solutions to the quadratic equation are:u=5,u=31​
u=5,u=31​
Verify Solutions
Find undefined (singularity) points:u=0
Take the denominator(s) of 4(u+u−1)−(u−u−1) and compare to zero
u=0
The following points are undefinedu=0
Combine undefined points with solutions:
u=5,u=31​
u=5,u=31​
Substitute back u=ex,solve for x
Solve ex=5:x=ln(5)
ex=5
Apply exponent rules
ex=5
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(5)
Apply log rule: ln(ea)=aln(ex)=xx=ln(5)
x=ln(5)
Solve ex=31​:x=−ln(3)
ex=31​
Apply exponent rules
ex=31​
If f(x)=g(x), then ln(f(x))=ln(g(x))ln(ex)=ln(31​)
Apply log rule: ln(ea)=aln(ex)=xx=ln(31​)
Simplify ln(31​):−ln(3)
ln(31​)
Apply log rule: loga​(x1​)=−loga​(x)=−ln(3)
x=−ln(3)
x=−ln(3)
x=ln(5),x=−ln(3)
x=ln(5),x=−ln(3)

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

2sin^2(x)+4sin(x)+2=02sin(θ)=csc(θ)cos(θ)=-0.72cos^2(x)+7cos(x)+5=02sin(x)=-1,0<= x<2pi

Frequently Asked Questions (FAQ)

  • What is the general solution for 4cosh(x)-sinh(x)=8 ?

    The general solution for 4cosh(x)-sinh(x)=8 is x=ln(5),x=-ln(3)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024