Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

arccos(x)-arcsin(x)=arccos((sqrt(3))/2)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

arccos(x)−arcsin(x)=arccos(23​​)

Solution

x=21​
Solution steps
arccos(x)−arcsin(x)=arccos(23​​)
a=b⇒cos(a)=cos(b)cos(arccos(x)−arcsin(x))=cos(arccos(23​​))
Use the following identity: cos(s−t)=cos(s)cos(t)+sin(s)sin(t)cos(arccos(x))cos(arcsin(x))+sin(arccos(x))sin(arcsin(x))=cos(arccos(23​​))
Use the following identity: cos(arccos(x))=x
Use the following identity: cos(arcsin(x))=1−x2​
Use the following identity: sin(arccos(x))=1−x2​
Use the following identity: sin(arcsin(x))=x
x1−x2​+1−x2​x=23​​
Solve x1−x2​+1−x2​x=23​​:x=21​,x=23​​
x1−x2​+1−x2​x=23​​
Multiply both sides by 2x1−x2​⋅2+1−x2​x⋅2=23​​⋅2
Simplify41−x2​x=3​
Square both sides:16x2−16x4=3
41−x2​x=3​
(41−x2​x)2=(3​)2
Expand (41−x2​x)2:16x2−16x4
(41−x2​x)2
Apply exponent rule: (a⋅b)n=anbn=42x2(1−x2​)2
(1−x2​)2:1−x2
Apply radical rule: a​=a21​=((1−x2)21​)2
Apply exponent rule: (ab)c=abc=(1−x2)21​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=1−x2
=42(1−x2)x2
42=16=16(1−x2)x2
Expand 16(1−x2)x2:16x2−16x4
16(1−x2)x2
=16x2(1−x2)
Apply the distributive law: a(b−c)=ab−aca=16x2,b=1,c=x2=16x2⋅1−16x2x2
=16⋅1⋅x2−16x2x2
Simplify 16⋅1⋅x2−16x2x2:16x2−16x4
16⋅1⋅x2−16x2x2
16⋅1⋅x2=16x2
16⋅1⋅x2
Multiply the numbers: 16⋅1=16=16x2
16x2x2=16x4
16x2x2
Apply exponent rule: ab⋅ac=ab+cx2x2=x2+2=16x2+2
Add the numbers: 2+2=4=16x4
=16x2−16x4
=16x2−16x4
=16x2−16x4
Expand (3​)2:3
(3​)2
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
16x2−16x4=3
16x2−16x4=3
Solve 16x2−16x4=3:x=21​,x=−21​,x=23​​,x=−23​​
16x2−16x4=3
Move 3to the left side
16x2−16x4=3
Subtract 3 from both sides16x2−16x4−3=3−3
Simplify16x2−16x4−3=0
16x2−16x4−3=0
Write in the standard form an​xn+…+a1​x+a0​=0−16x4+16x2−3=0
Rewrite the equation with u=x2 and u2=x4−16u2+16u−3=0
Solve −16u2+16u−3=0:u=41​,u=43​
−16u2+16u−3=0
Solve with the quadratic formula
−16u2+16u−3=0
Quadratic Equation Formula:
For a=−16,b=16,c=−3u1,2​=2(−16)−16±162−4(−16)(−3)​​
u1,2​=2(−16)−16±162−4(−16)(−3)​​
162−4(−16)(−3)​=8
162−4(−16)(−3)​
Apply rule −(−a)=a=162−4⋅16⋅3​
Multiply the numbers: 4⋅16⋅3=192=162−192​
162=256=256−192​
Subtract the numbers: 256−192=64=64​
Factor the number: 64=82=82​
Apply radical rule: 82​=8=8
u1,2​=2(−16)−16±8​
Separate the solutionsu1​=2(−16)−16+8​,u2​=2(−16)−16−8​
u=2(−16)−16+8​:41​
2(−16)−16+8​
Remove parentheses: (−a)=−a=−2⋅16−16+8​
Add/Subtract the numbers: −16+8=−8=−2⋅16−8​
Multiply the numbers: 2⋅16=32=−32−8​
Apply the fraction rule: −b−a​=ba​=328​
Cancel the common factor: 8=41​
u=2(−16)−16−8​:43​
2(−16)−16−8​
Remove parentheses: (−a)=−a=−2⋅16−16−8​
Subtract the numbers: −16−8=−24=−2⋅16−24​
Multiply the numbers: 2⋅16=32=−32−24​
Apply the fraction rule: −b−a​=ba​=3224​
Cancel the common factor: 8=43​
The solutions to the quadratic equation are:u=41​,u=43​
u=41​,u=43​
Substitute back u=x2,solve for x
Solve x2=41​:x=21​,x=−21​
x2=41​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
x=41​​,x=−41​​
41​​=21​
41​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=4​1​​
Apply radical rule: 1​=11​=1=4​1​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: a2​=a,a≥022​=2=2
=21​
−41​​=−21​
−41​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=−4​1​​
Apply radical rule: 1​=11​=1=−4​1​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: a2​=a,a≥022​=2=2
=−21​
x=21​,x=−21​
Solve x2=43​:x=23​​,x=−23​​
x2=43​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
x=43​​,x=−43​​
43​​=23​​
43​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=4​3​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: a2​=a,a≥022​=2=2
=23​​
−43​​=−23​​
−43​​
Apply radical rule: ba​​=b​a​​,a≥0,b≥0=−4​3​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: a2​=a,a≥022​=2=2
=−23​​
x=23​​,x=−23​​
The solutions are
x=21​,x=−21​,x=23​​,x=−23​​
x=21​,x=−21​,x=23​​,x=−23​​
Verify Solutions:x=21​True,x=−21​False,x=23​​True,x=−23​​False
Check the solutions by plugging them into x1−x2​+1−x2​x=23​​
Remove the ones that don't agree with the equation.
Plug in x=21​:True
(21​)1−(21​)2​+1−(21​)2​(21​)=23​​
(21​)1−(21​)2​+1−(21​)2​(21​)=23​​
(21​)1−(21​)2​+1−(21​)2​(21​)
Remove parentheses: (a)=a=21​1−(21​)2​+1−(21​)2​21​
Factor out common term 1−(21​)2​=1−(21​)2​(21​+21​)
21​+21​=1
21​+21​
Apply rule ca​±cb​=ca±b​=21+1​
Add the numbers: 1+1=2=22​
Apply rule aa​=1=1
=1−(21​)2​
(21​)2=221​
(21​)2
Apply exponent rule: (ba​)c=bcac​=2212​
Apply rule 1a=112=1=221​
=1−221​​
22=4=1−41​​
Join 1−41​:43​
1−41​
Convert element to fraction: 1=41⋅4​=41⋅4​−41​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=41⋅4−1​
1⋅4−1=3
1⋅4−1
Multiply the numbers: 1⋅4=4=4−1
Subtract the numbers: 4−1=3=3
=43​
=43​​
Apply radical rule: assuming a≥0,b≥0=4​3​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=23​​
23​​=23​​
True
Plug in x=−21​:False
(−21​)1−(−21​)2​+1−(−21​)2​(−21​)=23​​
(−21​)1−(−21​)2​+1−(−21​)2​(−21​)=−23​​
(−21​)1−(−21​)2​+1−(−21​)2​(−21​)
Remove parentheses: (−a)=−a=−21​1−(−21​)2​−1−(−21​)2​21​
Factor out common term 1−(−21​)2​=1−(−21​)2​(−21​−21​)
−21​−21​=−1
−21​−21​
Apply rule ca​±cb​=ca±b​=2−1−1​
Subtract the numbers: −1−1=−2=2−2​
Apply the fraction rule: b−a​=−ba​=−22​
Apply rule aa​=1=−1
=−−(−21​)2+1​
(−21​)2=221​
(−21​)2
Apply exponent rule: (−a)n=an,if n is even(−21​)2=(21​)2=(21​)2
Apply exponent rule: (ba​)c=bcac​=2212​
Apply rule 1a=112=1=221​
=−−221​+1​
22=4=−−41​+1​
Join 1−41​:43​
1−41​
Convert element to fraction: 1=41⋅4​=41⋅4​−41​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=41⋅4−1​
1⋅4−1=3
1⋅4−1
Multiply the numbers: 1⋅4=4=4−1
Subtract the numbers: 4−1=3=3
=43​
=−43​​
Simplify 43​​:23​​
43​​
Apply radical rule: assuming a≥0,b≥0=4​3​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=23​​
=−23​​
−23​​=23​​
False
Plug in x=23​​:True
(23​​)1−(23​​)2​+1−(23​​)2​(23​​)=23​​
(23​​)1−(23​​)2​+1−(23​​)2​(23​​)=23​​
(23​​)1−(23​​)2​+1−(23​​)2​(23​​)
Remove parentheses: (a)=a=23​​1−(23​​)2​+1−(23​​)2​23​​
Factor out common term 1−(23​​)2​=1−(23​​)2​(23​​+23​​)
23​​+23​​=3​
23​​+23​​
Apply rule ca​±cb​=ca±b​=23​+3​​
Factor 3​+3​:23​
3​+3​
Factor out common term 3​=3​(1+1)
Refine=23​
=223​​
Divide the numbers: 22​=1=3​
=3​−(23​​)2+1​
1−(23​​)2​=21​
1−(23​​)2​
(23​​)2=43​
(23​​)2
Apply exponent rule: (ba​)c=bcac​=22(3​)2​
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=223​
22=4=43​
=1−43​​
Join 1−43​:41​
1−43​
Convert element to fraction: 1=41⋅4​=41⋅4​−43​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=41⋅4−3​
1⋅4−3=1
1⋅4−3
Multiply the numbers: 1⋅4=4=4−3
Subtract the numbers: 4−3=1=1
=41​
=41​​
Apply radical rule: assuming a≥0,b≥0=4​1​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=21​​
Apply rule 1​=1=21​
=3​21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅3​​
Multiply: 1⋅3​=3​=23​​
23​​=23​​
True
Plug in x=−23​​:False
(−23​​)1−(−23​​)2​+1−(−23​​)2​(−23​​)=23​​
(−23​​)1−(−23​​)2​+1−(−23​​)2​(−23​​)=−23​​
(−23​​)1−(−23​​)2​+1−(−23​​)2​(−23​​)
Remove parentheses: (−a)=−a=−23​​1−(−23​​)2​−1−(−23​​)2​23​​
Factor out common term 1−(−23​​)2​=1−(−23​​)2​(−23​​−23​​)
−23​​−23​​=−3​
−23​​−23​​
Apply rule ca​±cb​=ca±b​=2−3​−3​​
Factor −3​−3​:−23​
−3​−3​
Factor out common term 3​=−3​(1+1)
Refine=−23​
=−223​​
Divide the numbers: 22​=1=−3​
=−3​−(−23​​)2+1​
1−(−23​​)2​=21​
1−(−23​​)2​
(−23​​)2=43​
(−23​​)2
Apply exponent rule: (−a)n=an,if n is even(−23​​)2=(23​​)2=(23​​)2
Apply exponent rule: (ba​)c=bcac​=22(3​)2​
(3​)2:3
Apply radical rule: a​=a21​=(321​)2
Apply exponent rule: (ab)c=abc=321​⋅2
21​⋅2=1
21​⋅2
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=3
=223​
22=4=43​
=1−43​​
Join 1−43​:41​
1−43​
Convert element to fraction: 1=41⋅4​=41⋅4​−43​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=41⋅4−3​
1⋅4−3=1
1⋅4−3
Multiply the numbers: 1⋅4=4=4−3
Subtract the numbers: 4−3=1=1
=41​
=41​​
Apply radical rule: assuming a≥0,b≥0=4​1​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=21​​
Apply rule 1​=1=21​
=−3​21​
Multiply fractions: a⋅cb​=ca⋅b​=−21⋅3​​
Multiply: 1⋅3​=3​=−23​​
−23​​=23​​
False
The solutions arex=21​,x=23​​
x=21​,x=23​​
Verify solutions by plugging them into the original equation
Check the solutions by plugging them into arccos(x)−arcsin(x)=arccos(23​​)
Remove the ones that don't agree with the equation.
Check the solution 21​:True
21​
Plug in n=121​
For arccos(x)−arcsin(x)=arccos(23​​)plug inx=21​arccos(21​)−arcsin(21​)=arccos(23​​)
Refine0.52359…=0.52359…
⇒True
Check the solution 23​​:False
23​​
Plug in n=123​​
For arccos(x)−arcsin(x)=arccos(23​​)plug inx=23​​arccos(23​​)−arcsin(23​​)=arccos(23​​)
Refine−0.52359…=0.52359…
⇒False
x=21​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

1/4 sin(4t)=02cos(4x)=2cos^2(2x)-sin(2x)-11-sin^2(θ)=02sin^2(x)+csc^2(x)=3sin(α)= 8/17

Frequently Asked Questions (FAQ)

  • What is the general solution for arccos(x)-arcsin(x)=arccos((sqrt(3))/2) ?

    The general solution for arccos(x)-arcsin(x)=arccos((sqrt(3))/2) is x= 1/2
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024