Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

950sin(pi/6 (7-x))+1650=2500

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

950sin(6π​(7−x))+1650=2500

Solution

x=7−12n−π6⋅1.10784…​,x=−12n+1+π6⋅1.10784…​
+1
Degrees
x=279.84280…∘−687.54935…∘n,x=178.52342…∘−687.54935…∘n
Solution steps
950sin(6π​(7−x))+1650=2500
Move 1650to the right side
950sin(6π​(7−x))+1650=2500
Subtract 1650 from both sides950sin(6π​(7−x))+1650−1650=2500−1650
Simplify950sin(6π​(7−x))=850
950sin(6π​(7−x))=850
Divide both sides by 950
950sin(6π​(7−x))=850
Divide both sides by 950950950sin(6π​(7−x))​=950850​
Simplifysin(6π​(7−x))=1917​
sin(6π​(7−x))=1917​
Apply trig inverse properties
sin(6π​(7−x))=1917​
General solutions for sin(6π​(7−x))=1917​sin(x)=a⇒x=arcsin(a)+2πn,x=π−arcsin(a)+2πn6π​(7−x)=arcsin(1917​)+2πn,6π​(7−x)=π−arcsin(1917​)+2πn
6π​(7−x)=arcsin(1917​)+2πn,6π​(7−x)=π−arcsin(1917​)+2πn
Solve 6π​(7−x)=arcsin(1917​)+2πn:x=7−12n−π6arcsin(1917​)​
6π​(7−x)=arcsin(1917​)+2πn
Multiply both sides by 6
6π​(7−x)=arcsin(1917​)+2πn
Multiply both sides by 66⋅6π​(7−x)=6arcsin(1917​)+6⋅2πn
Simplify
6⋅6π​(7−x)=6arcsin(1917​)+6⋅2πn
Simplify 6⋅6π​(7−x):π(7−x)
6⋅6π​(7−x)
Multiply fractions: a⋅cb​=ca⋅b​=66π​(−x+7)
Cancel the common factor: 6=(7−x)π
Simplify 6arcsin(1917​)+6⋅2πn:6arcsin(1917​)+12πn
6arcsin(1917​)+6⋅2πn
Multiply the numbers: 6⋅2=12=6arcsin(1917​)+12πn
π(7−x)=6arcsin(1917​)+12πn
π(7−x)=6arcsin(1917​)+12πn
π(7−x)=6arcsin(1917​)+12πn
Divide both sides by π
π(7−x)=6arcsin(1917​)+12πn
Divide both sides by πππ(7−x)​=π6arcsin(1917​)​+π12πn​
Simplify7−x=π6arcsin(1917​)​+12n
7−x=π6arcsin(1917​)​+12n
Move 7to the right side
7−x=π6arcsin(1917​)​+12n
Subtract 7 from both sides7−x−7=π6arcsin(1917​)​+12n−7
Simplify−x=π6arcsin(1917​)​+12n−7
−x=π6arcsin(1917​)​+12n−7
Divide both sides by −1
−x=π6arcsin(1917​)​+12n−7
Divide both sides by −1−1−x​=−1π6arcsin(1917​)​​+−112n​−−17​
Simplify
−1−x​=−1π6arcsin(1917​)​​+−112n​−−17​
Simplify −1−x​:x
−1−x​
Apply the fraction rule: −b−a​=ba​=1x​
Apply rule 1a​=a=x
Simplify −1π6arcsin(1917​)​​+−112n​−−17​:7−12n−π6arcsin(1917​)​
−1π6arcsin(1917​)​​+−112n​−−17​
Group like terms=−−17​+−112n​+−1π6arcsin(1917​)​​
−17​=−7
−17​
Apply the fraction rule: −ba​=−ba​=−17​
Apply rule 1a​=a=−7
−112n​=−12n
−112n​
Apply the fraction rule: −ba​=−ba​=−112n​
Apply rule 1a​=a=−12n
=−(−7)−12n+−1π6arcsin(1917​)​​
Apply rule −(−a)=a=7−12n+−1π6arcsin(1917​)​​
−1π6arcsin(1917​)​​=−π6arcsin(1917​)​
−1π6arcsin(1917​)​​
Apply the fraction rule: −ba​=−ba​=−1π6arcsin(1917​)​​
Apply the fraction rule: 1a​=a1π6arcsin(1917​)​​=π6arcsin(1917​)​=−π6arcsin(1917​)​
=7−12n−π6arcsin(1917​)​
x=7−12n−π6arcsin(1917​)​
x=7−12n−π6arcsin(1917​)​
x=7−12n−π6arcsin(1917​)​
Solve 6π​(7−x)=π−arcsin(1917​)+2πn:x=−12n+1+π6arcsin(1917​)​
6π​(7−x)=π−arcsin(1917​)+2πn
Multiply both sides by 6
6π​(7−x)=π−arcsin(1917​)+2πn
Multiply both sides by 66⋅6π​(7−x)=6π−6arcsin(1917​)+6⋅2πn
Simplify
6⋅6π​(7−x)=6π−6arcsin(1917​)+6⋅2πn
Simplify 6⋅6π​(7−x):π(7−x)
6⋅6π​(7−x)
Multiply fractions: a⋅cb​=ca⋅b​=66π​(−x+7)
Cancel the common factor: 6=(7−x)π
Simplify 6π−6arcsin(1917​)+6⋅2πn:6π−6arcsin(1917​)+12πn
6π−6arcsin(1917​)+6⋅2πn
Multiply the numbers: 6⋅2=12=6π−6arcsin(1917​)+12πn
π(7−x)=6π−6arcsin(1917​)+12πn
π(7−x)=6π−6arcsin(1917​)+12πn
π(7−x)=6π−6arcsin(1917​)+12πn
Divide both sides by π
π(7−x)=6π−6arcsin(1917​)+12πn
Divide both sides by πππ(7−x)​=π6π​−π6arcsin(1917​)​+π12πn​
Simplify
ππ(7−x)​=π6π​−π6arcsin(1917​)​+π12πn​
Simplify ππ(7−x)​:7−x
ππ(7−x)​
Cancel the common factor: π=7−x
Simplify π6π​−π6arcsin(1917​)​+π12πn​:6−π6arcsin(1917​)​+12n
π6π​−π6arcsin(1917​)​+π12πn​
Cancel π6π​:6
π6π​
Cancel the common factor: π=6
=6−π6arcsin(1917​)​+π12πn​
Cancel π12πn​:12n
π12πn​
Cancel the common factor: π=12n
=6−π6arcsin(1917​)​+12n
7−x=6−π6arcsin(1917​)​+12n
7−x=6−π6arcsin(1917​)​+12n
7−x=6−π6arcsin(1917​)​+12n
Move 7to the right side
7−x=6−π6arcsin(1917​)​+12n
Subtract 7 from both sides7−x−7=6−π6arcsin(1917​)​+12n−7
Simplify
7−x−7=6−π6arcsin(1917​)​+12n−7
Simplify 7−x−7:−x
7−x−7
Add similar elements: 7−7=0
=−x
Simplify 6−π6arcsin(1917​)​+12n−7:12n−1−π6arcsin(1917​)​
6−π6arcsin(1917​)​+12n−7
Subtract the numbers: 6−7=−1=12n−1−π6arcsin(1917​)​
−x=12n−1−π6arcsin(1917​)​
−x=12n−1−π6arcsin(1917​)​
−x=12n−1−π6arcsin(1917​)​
Divide both sides by −1
−x=12n−1−π6arcsin(1917​)​
Divide both sides by −1−1−x​=−112n​−−11​−−1π6arcsin(1917​)​​
Simplify
−1−x​=−112n​−−11​−−1π6arcsin(1917​)​​
Simplify −1−x​:x
−1−x​
Apply the fraction rule: −b−a​=ba​=1x​
Apply rule 1a​=a=x
Simplify −112n​−−11​−−1π6arcsin(1917​)​​:−12n+1+π6arcsin(1917​)​
−112n​−−11​−−1π6arcsin(1917​)​​
−112n​=−12n
−112n​
Apply the fraction rule: −ba​=−ba​=−112n​
Apply rule 1a​=a=−12n
=−12n−−11​−−1π6arcsin(1917​)​​
−11​=−1
−11​
Apply the fraction rule: −ba​=−ba​=−11​
Apply rule 1a​=a=−1
−1π6arcsin(1917​)​​=−π6arcsin(1917​)​
−1π6arcsin(1917​)​​
Apply the fraction rule: −ba​=−ba​=−1π6arcsin(1917​)​​
Apply the fraction rule: 1a​=a1π6arcsin(1917​)​​=π6arcsin(1917​)​=−π6arcsin(1917​)​
=−12n−(−1)−(−π6arcsin(1917​)​)
Apply rule −(−a)=a=−12n+1+π6arcsin(1917​)​
x=−12n+1+π6arcsin(1917​)​
x=−12n+1+π6arcsin(1917​)​
x=−12n+1+π6arcsin(1917​)​
x=7−12n−π6arcsin(1917​)​,x=−12n+1+π6arcsin(1917​)​
Show solutions in decimal formx=7−12n−π6⋅1.10784…​,x=−12n+1+π6⋅1.10784…​

Graph

Sorry, your browser does not support this application
View interactive graph

Popular Examples

sin(2x-pi/6)=-1/2cot(θ)+2csc(θ)=4tan(x)+1=-sqrt(3)-sqrt(3)cot(x)0=asin(x)+bcos(x)2sin^2(x)+9cos(x)-6=0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024