Soluciones
Calculadora de integrales (antiderivadas)Calculadora de derivadasCalculadora de ÁlgebraCalculadora de matricesMás...
Gráficos
Gráfica de líneaGráfica exponencialGráfica cuadráticaGráfico de senoMás...
Calculadoras
Calculadora de IMCCalculadora de interés compuestoCalculadora de porcentajeCalculadora de aceleraciónMás...
Geometría
Calculadora del teorema de pitágorasCalculadora del área del círculoCalculadora de triángulo isóscelesCalculadora de TriángulosMás...
Herramientas
CuadernoGruposHojas de referenciaHojas de trabajoPracticaVerificar
es
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometría >

sin(c)= 2/(pi(-cos(c)+1))

  • Pre-Álgebra
  • Álgebra
  • Precálculo
  • Cálculo
  • Funciones
  • Álgebra Lineal
  • Trigonometría
  • Estadística
  • Química
  • Economía
  • Conversiones

Solución

sin(c)=π(−cos(c)+1)2​

Solución

c=1.23822…+2πn,c=2.80812…+2πn
+1
Grados
c=70.94503…∘+360∘n,c=160.89345…∘+360∘n
Pasos de solución
sin(c)=π(−cos(c)+1)2​
Elevar al cuadrado ambos ladossin2(c)=(π(−cos(c)+1)2​)2
Restar (π(−cos(c)+1)2​)2 de ambos ladossin2(c)−π2(−cos(c)+1)24​=0
Simplificar sin2(c)−π2(−cos(c)+1)24​:π2(−cos(c)+1)2π2sin2(c)(−cos(c)+1)2−4​
sin2(c)−π2(−cos(c)+1)24​
Convertir a fracción: sin2(c)=π2(−cos(c)+1)2sin2(c)π2(−cos(c)+1)2​=π2(−cos(c)+1)2sin2(c)π2(−cos(c)+1)2​−π2(−cos(c)+1)24​
Ya que los denominadores son iguales, combinar las fracciones: ca​±cb​=ca±b​=π2(−cos(c)+1)2sin2(c)π2(−cos(c)+1)2−4​
π2(−cos(c)+1)2π2sin2(c)(−cos(c)+1)2−4​=0
g(x)f(x)​=0⇒f(x)=0π2sin2(c)(−cos(c)+1)2−4=0
Re-escribir usando identidades trigonométricas
−4+(1−cos(c))2sin2(c)π2
Utilizar la identidad pitagórica: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−4+(1−cos(c))2(1−cos2(c))π2
−4+(1−cos(c))2(1−cos2(c))π2=0
Usando el método de sustitución
−4+(1−cos(c))2(1−cos2(c))π2=0
Sea: cos(c)=u−4+(1−u)2(1−u2)π2=0
−4+(1−u)2(1−u2)π2=0:u≈0.32647…,u≈−0.94491…
−4+(1−u)2(1−u2)π2=0
Desarrollar −4+(1−u)2(1−u2)π2:−4+2π2u3−π2u4−2π2u+π2
−4+(1−u)2(1−u2)π2
(1−u)2=1−2u+u2
(1−u)2
Aplicar la formula del binomio al cuadrado: (a−b)2=a2−2ab+b2a=1,b=u
=12−2⋅1⋅u+u2
Simplificar 12−2⋅1⋅u+u2:1−2u+u2
12−2⋅1⋅u+u2
Aplicar la regla 1a=112=1=1−2⋅1⋅u+u2
Multiplicar los numeros: 2⋅1=2=1−2u+u2
=1−2u+u2
=−4+π2(u2−2u+1)(−u2+1)
=−4+π2(1−2u+u2)(1−u2)
Expandir (1−2u+u2)(1−u2)π2:2π2u3−π2u4−2π2u+π2
Expandir (1−2u+u2)(1−u2):2u3−u4−2u+1
(1−2u+u2)(1−u2)
Aplicar la siguiente regla de productos notables=1⋅1+1⋅(−u2)+(−2u)⋅1+(−2u)(−u2)+u2⋅1+u2(−u2)
Aplicar las reglas de los signos+(−a)=−a,(−a)(−b)=ab=1⋅1−1⋅u2−2⋅1⋅u+2u2u+1⋅u2−u2u2
Simplificar 1⋅1−1⋅u2−2⋅1⋅u+2u2u+1⋅u2−u2u2:2u3−u4−2u+1
1⋅1−1⋅u2−2⋅1⋅u+2u2u+1⋅u2−u2u2
Agrupar términos semejantes=−1⋅u2+2u2u+1⋅u2−u2u2−2⋅1⋅u+1⋅1
Sumar elementos similares: −1⋅u2+1⋅u2=0=2u2u−u2u2−2⋅1⋅u+1⋅1
2u2u=2u3
2u2u
Aplicar las leyes de los exponentes: ab⋅ac=ab+cu2u=u2+1=2u2+1
Sumar: 2+1=3=2u3
u2u2=u4
u2u2
Aplicar las leyes de los exponentes: ab⋅ac=ab+cu2u2=u2+2=u2+2
Sumar: 2+2=4=u4
2⋅1⋅u=2u
2⋅1⋅u
Multiplicar los numeros: 2⋅1=2=2u
1⋅1=1
1⋅1
Multiplicar los numeros: 1⋅1=1=1
=2u3−u4−2u+1
=2u3−u4−2u+1
=π2(2u3−u4−2u+1)
Expandir π2(2u3−u4−2u+1):2π2u3−π2u4−2π2u+π2
π2(2u3−u4−2u+1)
Aplicar la siguiente regla de productos notables=π2⋅2u3+π2(−u4)+π2(−2u)+π2⋅1
Aplicar las reglas de los signos+(−a)=−a=2π2u3−π2u4−2π2u+1⋅π2
Multiplicar: 1⋅π2=π2=2π2u3−π2u4−2π2u+π2
=2π2u3−π2u4−2π2u+π2
=−4+2π2u3−π2u4−2π2u+π2
−4+2π2u3−π2u4−2π2u+π2=0
Escribir en la forma binómica an​xn+…+a1​x+c=0−π2u4+2π2u3−2π2u−4+π2=0
Encontrar una solución para −9.86960…u4+19.73920…u3−19.73920…u+5.86960…=0 utilizando el método de Newton-Raphson:u≈0.32647…
−9.86960…u4+19.73920…u3−19.73920…u+5.86960…=0
Definición del método de Newton-Raphson
f(u)=−9.86960…u4+19.73920…u3−19.73920…u+5.86960…
Hallar f′(u):−39.47841…u3+59.21762…u2−19.73920…
dud​(−9.86960…u4+19.73920…u3−19.73920…u+5.86960…)
Aplicar la regla de la suma/diferencia: (f±g)′=f′±g′=−dud​(9.86960…u4)+dud​(19.73920…u3)−dud​(19.73920…u)+dud​(5.86960…)
dud​(9.86960…u4)=39.47841…u3
dud​(9.86960…u4)
Sacar la constante: (a⋅f)′=a⋅f′=9.86960…dud​(u4)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=9.86960…⋅4u4−1
Simplificar=39.47841…u3
dud​(19.73920…u3)=59.21762…u2
dud​(19.73920…u3)
Sacar la constante: (a⋅f)′=a⋅f′=19.73920…dud​(u3)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=19.73920…⋅3u3−1
Simplificar=59.21762…u2
dud​(19.73920…u)=19.73920…
dud​(19.73920…u)
Sacar la constante: (a⋅f)′=a⋅f′=19.73920…dudu​
Aplicar la regla de derivación: dudu​=1=19.73920…⋅1
Simplificar=19.73920…
dud​(5.86960…)=0
dud​(5.86960…)
Derivada de una constante: dxd​(a)=0=0
=−39.47841…u3+59.21762…u2−19.73920…+0
Simplificar=−39.47841…u3+59.21762…u2−19.73920…
Sea u0​=0Calcular un+1​ hasta que Δun+1​<0.000001
u1​=0.29735…:Δu1​=0.29735…
f(u0​)=−9.86960…⋅04+19.73920…⋅03−19.73920…⋅0+5.86960…=5.86960…f′(u0​)=−39.47841…⋅03+59.21762…⋅02−19.73920…=−19.73920…u1​=0.29735…
Δu1​=∣0.29735…−0∣=0.29735…Δu1​=0.29735…
u2​=0.32578…:Δu2​=0.02843…
f(u1​)=−9.86960…⋅0.29735…4+19.73920…⋅0.29735…3−19.73920…⋅0.29735…+5.86960…=0.44183…f′(u1​)=−39.47841…⋅0.29735…3+59.21762…⋅0.29735…2−19.73920…=−15.54109…u2​=0.32578…
Δu2​=∣0.32578…−0.29735…∣=0.02843…Δu2​=0.02843…
u3​=0.32647…:Δu3​=0.00068…
f(u2​)=−9.86960…⋅0.32578…4+19.73920…⋅0.32578…3−19.73920…⋅0.32578…+5.86960…=0.01017…f′(u2​)=−39.47841…⋅0.32578…3+59.21762…⋅0.32578…2−19.73920…=−14.81908…u3​=0.32647…
Δu3​=∣0.32647…−0.32578…∣=0.00068…Δu3​=0.00068…
u4​=0.32647…:Δu4​=4.14683E−7
f(u3​)=−9.86960…⋅0.32647…4+19.73920…⋅0.32647…3−19.73920…⋅0.32647…+5.86960…=6.13781E−6f′(u3​)=−39.47841…⋅0.32647…3+59.21762…⋅0.32647…2−19.73920…=−14.80121…u4​=0.32647…
Δu4​=∣0.32647…−0.32647…∣=4.14683E−7Δu4​=4.14683E−7
u≈0.32647…
Aplicar la división larga Equation0:u−0.32647…−π2u4+2π2u3−2π2u−4+π2​=−9.86960…u3+16.51702…u2+5.39239…u−17.97872…
−9.86960…u3+16.51702…u2+5.39239…u−17.97872…≈0
Encontrar una solución para −9.86960…u3+16.51702…u2+5.39239…u−17.97872…=0 utilizando el método de Newton-Raphson:u≈−0.94491…
−9.86960…u3+16.51702…u2+5.39239…u−17.97872…=0
Definición del método de Newton-Raphson
f(u)=−9.86960…u3+16.51702…u2+5.39239…u−17.97872…
Hallar f′(u):−29.60881…u2+33.03405…u+5.39239…
dud​(−9.86960…u3+16.51702…u2+5.39239…u−17.97872…)
Aplicar la regla de la suma/diferencia: (f±g)′=f′±g′=−dud​(9.86960…u3)+dud​(16.51702…u2)+dud​(5.39239…u)−dud​(17.97872…)
dud​(9.86960…u3)=29.60881…u2
dud​(9.86960…u3)
Sacar la constante: (a⋅f)′=a⋅f′=9.86960…dud​(u3)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=9.86960…⋅3u3−1
Simplificar=29.60881…u2
dud​(16.51702…u2)=33.03405…u
dud​(16.51702…u2)
Sacar la constante: (a⋅f)′=a⋅f′=16.51702…dud​(u2)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=16.51702…⋅2u2−1
Simplificar=33.03405…u
dud​(5.39239…u)=5.39239…
dud​(5.39239…u)
Sacar la constante: (a⋅f)′=a⋅f′=5.39239…dudu​
Aplicar la regla de derivación: dudu​=1=5.39239…⋅1
Simplificar=5.39239…
dud​(17.97872…)=0
dud​(17.97872…)
Derivada de una constante: dxd​(a)=0=0
=−29.60881…u2+33.03405…u+5.39239…−0
Simplificar=−29.60881…u2+33.03405…u+5.39239…
Sea u0​=−1Calcular un+1​ hasta que Δun+1​<0.000001
u1​=−0.94732…:Δu1​=0.05267…
f(u0​)=−9.86960…(−1)3+16.51702…(−1)2+5.39239…(−1)−17.97872…=3.01551…f′(u0​)=−29.60881…(−1)2+33.03405…(−1)+5.39239…=−57.25047…u1​=−0.94732…
Δu1​=∣−0.94732…−(−1)∣=0.05267…Δu1​=0.05267…
u2​=−0.94491…:Δu2​=0.00241…
f(u1​)=−9.86960…(−0.94732…)3+16.51702…(−0.94732…)2+5.39239…(−0.94732…)−17.97872…=0.12652…f′(u1​)=−29.60881…(−0.94732…)2+33.03405…(−0.94732…)+5.39239…=−52.47351…u2​=−0.94491…
Δu2​=∣−0.94491…−(−0.94732…)∣=0.00241…Δu2​=0.00241…
u3​=−0.94491…:Δu3​=4.95571E−6
f(u2​)=−9.86960…(−0.94491…)3+16.51702…(−0.94491…)2+5.39239…(−0.94491…)−17.97872…=0.00025…f′(u2​)=−29.60881…(−0.94491…)2+33.03405…(−0.94491…)+5.39239…=−52.25876…u3​=−0.94491…
Δu3​=∣−0.94491…−(−0.94491…)∣=4.95571E−6Δu3​=4.95571E−6
u4​=−0.94491…:Δu4​=2.09107E−11
f(u3​)=−9.86960…(−0.94491…)3+16.51702…(−0.94491…)2+5.39239…(−0.94491…)−17.97872…=1.09276E−9f′(u3​)=−29.60881…(−0.94491…)2+33.03405…(−0.94491…)+5.39239…=−52.25832…u4​=−0.94491…
Δu4​=∣−0.94491…−(−0.94491…)∣=2.09107E−11Δu4​=2.09107E−11
u≈−0.94491…
Aplicar la división larga Equation0:u+0.94491…−9.86960…u3+16.51702…u2+5.39239…u−17.97872…​=−9.86960…u2+25.84293…u−19.02688…
−9.86960…u2+25.84293…u−19.02688…≈0
Encontrar una solución para −9.86960…u2+25.84293…u−19.02688…=0 utilizando el método de Newton-Raphson:Sin solución para u∈R
−9.86960…u2+25.84293…u−19.02688…=0
Definición del método de Newton-Raphson
f(u)=−9.86960…u2+25.84293…u−19.02688…
Hallar f′(u):−19.73920…u+25.84293…
dud​(−9.86960…u2+25.84293…u−19.02688…)
Aplicar la regla de la suma/diferencia: (f±g)′=f′±g′=−dud​(9.86960…u2)+dud​(25.84293…u)−dud​(19.02688…)
dud​(9.86960…u2)=19.73920…u
dud​(9.86960…u2)
Sacar la constante: (a⋅f)′=a⋅f′=9.86960…dud​(u2)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=9.86960…⋅2u2−1
Simplificar=19.73920…u
dud​(25.84293…u)=25.84293…
dud​(25.84293…u)
Sacar la constante: (a⋅f)′=a⋅f′=25.84293…dudu​
Aplicar la regla de derivación: dudu​=1=25.84293…⋅1
Simplificar=25.84293…
dud​(19.02688…)=0
dud​(19.02688…)
Derivada de una constante: dxd​(a)=0=0
=−19.73920…u+25.84293…−0
Simplificar=−19.73920…u+25.84293…
Sea u0​=1Calcular un+1​ hasta que Δun+1​<0.000001
u1​=1.50027…:Δu1​=0.50027…
f(u0​)=−9.86960…⋅12+25.84293…⋅1−19.02688…=−3.05355…f′(u0​)=−19.73920…⋅1+25.84293…=6.10372…u1​=1.50027…
Δu1​=∣1.50027…−1∣=0.50027…Δu1​=0.50027…
u2​=0.84530…:Δu2​=0.65497…
f(u1​)=−9.86960…⋅1.50027…2+25.84293…⋅1.50027…−19.02688…=−2.47014…f′(u1​)=−19.73920…⋅1.50027…+25.84293…=−3.77137…u2​=0.84530…
Δu2​=∣0.84530…−1.50027…∣=0.65497…Δu2​=0.65497…
u3​=1.30766…:Δu3​=0.46235…
f(u2​)=−9.86960…⋅0.84530…2+25.84293…⋅0.84530…−19.02688…=−4.23396…f′(u2​)=−19.73920…⋅0.84530…+25.84293…=9.15728…u3​=1.30766…
Δu3​=∣1.30766…−0.84530…∣=0.46235…Δu3​=0.46235…
u4​=70.11579…:Δu4​=68.80812…
f(u3​)=−9.86960…⋅1.30766…2+25.84293…⋅1.30766…−19.02688…=−2.10989…f′(u3​)=−19.73920…⋅1.30766…+25.84293…=0.03066…u4​=70.11579…
Δu4​=∣70.11579…−1.30766…∣=68.80812…Δu4​=68.80812…
u5​=35.71095…:Δu5​=34.40483…
f(u4​)=−9.86960…⋅70.11579…2+25.84293…⋅70.11579…−19.02688…=−46728.21617…f′(u4​)=−19.73920…⋅70.11579…+25.84293…=−1358.18729…u5​=35.71095…
Δu5​=∣35.71095…−70.11579…∣=34.40483…Δu5​=34.40483…
u6​=18.50697…:Δu6​=17.20397…
f(u5​)=−9.86960…⋅35.71095…2+25.84293…⋅35.71095…−19.02688…=−11682.58153…f′(u5​)=−19.73920…⋅35.71095…+25.84293…=−679.06298…u6​=18.50697…
Δu6​=∣18.50697…−35.71095…∣=17.20397…Δu6​=17.20397…
u7​=9.90188…:Δu7​=8.60509…
f(u6​)=−9.86960…⋅18.50697…2+25.84293…⋅18.50697…−19.02688…=−2921.17294…f′(u6​)=−19.73920…⋅18.50697…+25.84293…=−339.47016…u7​=9.90188…
Δu7​=∣9.90188…−18.50697…∣=8.60509…Δu7​=8.60509…
u8​=5.59311…:Δu8​=4.30877…
f(u7​)=−9.86960…⋅9.90188…2+25.84293…⋅9.90188…−19.02688…=−730.82108…f′(u7​)=−19.73920…⋅9.90188…+25.84293…=−169.61239…u8​=5.59311…
Δu8​=∣5.59311…−9.90188…∣=4.30877…Δu8​=4.30877…
u9​=3.42621…:Δu9​=2.16689…
f(u8​)=−9.86960…⋅5.59311…2+25.84293…⋅5.59311…−19.02688…=−183.23426…f′(u8​)=−19.73920…⋅5.59311…+25.84293…=−84.56065…u9​=3.42621…
Δu9​=∣3.42621…−5.59311…∣=2.16689…Δu9​=2.16689…
u10​=2.31722…:Δu10​=1.10898…
f(u9​)=−9.86960…⋅3.42621…2+25.84293…⋅3.42621…−19.02688…=−46.34217…f′(u9​)=−19.73920…⋅3.42621…+25.84293…=−41.78781…u10​=2.31722…
Δu10​=∣2.31722…−3.42621…∣=1.10898…Δu10​=1.10898…
u11​=1.70718…:Δu11​=0.61004…
f(u10​)=−9.86960…⋅2.31722…2+25.84293…⋅2.31722…−19.02688…=−12.13817…f′(u10​)=−19.73920…⋅2.31722…+25.84293…=−19.89727…u11​=1.70718…
Δu11​=∣1.70718…−2.31722…∣=0.61004…Δu11​=0.61004…
u12​=1.23961…:Δu12​=0.46756…
f(u11​)=−9.86960…⋅1.70718…2+25.84293…⋅1.70718…−19.02688…=−3.67298…f′(u11​)=−19.73920…⋅1.70718…+25.84293…=−7.85553…u12​=1.23961…
Δu12​=∣1.23961…−1.70718…∣=0.46756…Δu12​=0.46756…
u13​=2.81013…:Δu13​=1.57051…
f(u12​)=−9.86960…⋅1.23961…2+25.84293…⋅1.23961…−19.02688…=−2.15767…f′(u12​)=−19.73920…⋅1.23961…+25.84293…=1.37386…u13​=2.81013…
Δu13​=∣2.81013…−1.23961…∣=1.57051…Δu13​=1.57051…
u14​=1.98846…:Δu14​=0.82167…
f(u13​)=−9.86960…⋅2.81013…2+25.84293…⋅2.81013…−19.02688…=−24.34357…f′(u13​)=−19.73920…⋅2.81013…+25.84293…=−29.62687…u14​=1.98846…
Δu14​=∣1.98846…−2.81013…∣=0.82167…Δu14​=0.82167…
u15​=1.49147…:Δu15​=0.49698…
f(u14​)=−9.86960…⋅1.98846…2+25.84293…⋅1.98846…−19.02688…=−6.66341…f′(u14​)=−19.73920…⋅1.98846…+25.84293…=−13.40771…u15​=1.49147…
Δu15​=∣1.49147…−1.98846…∣=0.49698…Δu15​=0.49698…
u16​=0.81389…:Δu16​=0.67758…
f(u15​)=−9.86960…⋅1.49147…2+25.84293…⋅1.49147…−19.02688…=−2.43772…f′(u15​)=−19.73920…⋅1.49147…+25.84293…=−3.59765…u16​=0.81389…
Δu16​=∣0.81389…−1.49147…∣=0.67758…Δu16​=0.67758…
No se puede encontrar solución
Las soluciones sonu≈0.32647…,u≈−0.94491…
Sustituir en la ecuación u=cos(c)cos(c)≈0.32647…,cos(c)≈−0.94491…
cos(c)≈0.32647…,cos(c)≈−0.94491…
cos(c)=0.32647…:c=arccos(0.32647…)+2πn,c=2π−arccos(0.32647…)+2πn
cos(c)=0.32647…
Aplicar propiedades trigonométricas inversas
cos(c)=0.32647…
Soluciones generales para cos(c)=0.32647…cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnc=arccos(0.32647…)+2πn,c=2π−arccos(0.32647…)+2πn
c=arccos(0.32647…)+2πn,c=2π−arccos(0.32647…)+2πn
cos(c)=−0.94491…:c=arccos(−0.94491…)+2πn,c=−arccos(−0.94491…)+2πn
cos(c)=−0.94491…
Aplicar propiedades trigonométricas inversas
cos(c)=−0.94491…
Soluciones generales para cos(c)=−0.94491…cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnc=arccos(−0.94491…)+2πn,c=−arccos(−0.94491…)+2πn
c=arccos(−0.94491…)+2πn,c=−arccos(−0.94491…)+2πn
Combinar toda las solucionesc=arccos(0.32647…)+2πn,c=2π−arccos(0.32647…)+2πn,c=arccos(−0.94491…)+2πn,c=−arccos(−0.94491…)+2πn
Verificar las soluciones sustituyendo en la ecuación original
Verificar las soluciones sustituyéndolas en sin(c)=π(−cos(c)+1)2​
Quitar las que no concuerden con la ecuación.
Verificar la solución arccos(0.32647…)+2πn:Verdadero
arccos(0.32647…)+2πn
Sustituir n=1arccos(0.32647…)+2π1
Multiplicar sin(c)=π(−cos(c)+1)2​ por c=arccos(0.32647…)+2π1sin(arccos(0.32647…)+2π1)=π(−cos(arccos(0.32647…)+2π1)+1)2​
Simplificar0.94520…=0.94520…
⇒Verdadero
Verificar la solución 2π−arccos(0.32647…)+2πn:Falso
2π−arccos(0.32647…)+2πn
Sustituir n=12π−arccos(0.32647…)+2π1
Multiplicar sin(c)=π(−cos(c)+1)2​ por c=2π−arccos(0.32647…)+2π1sin(2π−arccos(0.32647…)+2π1)=π(−cos(2π−arccos(0.32647…)+2π1)+1)2​
Simplificar−0.94520…=0.94520…
⇒Falso
Verificar la solución arccos(−0.94491…)+2πn:Verdadero
arccos(−0.94491…)+2πn
Sustituir n=1arccos(−0.94491…)+2π1
Multiplicar sin(c)=π(−cos(c)+1)2​ por c=arccos(−0.94491…)+2π1sin(arccos(−0.94491…)+2π1)=π(−cos(arccos(−0.94491…)+2π1)+1)2​
Simplificar0.32732…=0.32732…
⇒Verdadero
Verificar la solución −arccos(−0.94491…)+2πn:Falso
−arccos(−0.94491…)+2πn
Sustituir n=1−arccos(−0.94491…)+2π1
Multiplicar sin(c)=π(−cos(c)+1)2​ por c=−arccos(−0.94491…)+2π1sin(−arccos(−0.94491…)+2π1)=π(−cos(−arccos(−0.94491…)+2π1)+1)2​
Simplificar−0.32732…=0.32732…
⇒Falso
c=arccos(0.32647…)+2πn,c=arccos(−0.94491…)+2πn
Mostrar soluciones en forma decimalc=1.23822…+2πn,c=2.80812…+2πn

Gráfica

Sorry, your browser does not support this application
Ver gráfico interactivo

Ejemplos populares

4cos^2(x-3)=0-2cos(x)+4cos(2x)=0cos(A)= 1/2tan(x)=csc(x)0=1-sqrt(2)sin(x)
Herramientas de estudioSolucionador Matemático de IAProblemas popularesHojas de trabajoPracticaHojas de referenciaCalculadorasCalculadora gráficaCalculadora de GeometríaVerificar solución
AplicacionesAplicación Symbolab (Android)Calculadora gráfica (Android)Practica (Android)Aplicación Symbolab (iOS)Calculadora gráfica (iOS)Practica (iOS)Extensión de ChromeSymbolab Math Solver API
EmpresaAcerca de SymbolabBlogAyuda
LegalPrivacidadTérminosPolítica de cookiesConfiguración de CookiesNo vendas ni compartas mi información personalCopyright, Guías Comunitarias, DSA & otros recursos legalesCentro Legal de Learneo
Redes sociales
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024