Soluciones
Calculadora de integrales (antiderivadas)Calculadora de derivadasCalculadora de ÁlgebraCalculadora de matricesMás...
Gráficos
Gráfica de líneaGráfica exponencialGráfica cuadráticaGráfico de senoMás...
Calculadoras
Calculadora de IMCCalculadora de interés compuestoCalculadora de porcentajeCalculadora de aceleraciónMás...
Geometría
Calculadora del teorema de pitágorasCalculadora del área del círculoCalculadora de triángulo isóscelesCalculadora de TriángulosMás...
Herramientas
CuadernoGruposHojas de referenciaHojas de trabajoPracticaVerificar
es
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometría >

2cos(x)+4cos(4x)=0

  • Pre-Álgebra
  • Álgebra
  • Precálculo
  • Cálculo
  • Funciones
  • Álgebra Lineal
  • Trigonometría
  • Estadística
  • Química
  • Economía
  • Conversiones

Solución

2cos(x)+4cos(4x)=0

Solución

x=2.87471…+2πn,x=−2.87471…+2πn,x=0.50586…+2πn,x=2π−0.50586…+2πn,x=1.92046…+2πn,x=−1.92046…+2πn,x=1.12361…+2πn,x=2π−1.12361…+2πn
+1
Grados
x=164.70891…∘+360∘n,x=−164.70891…∘+360∘n,x=28.98415…∘+360∘n,x=331.01584…∘+360∘n,x=110.03427…∘+360∘n,x=−110.03427…∘+360∘n,x=64.37831…∘+360∘n,x=295.62168…∘+360∘n
Pasos de solución
2cos(x)+4cos(4x)=0
Re-escribir usando identidades trigonométricas
2cos(x)+4cos(4x)
cos(4x)=2cos2(2x)−1
cos(4x)
Reescribir como=cos(2⋅2x)
Utilizar la identidad trigonométrica del ángulo doble: cos(2x)=2cos2(x)−1cos(2⋅2x)=2cos2(2x)−1=2cos2(2x)−1
=2cos(x)+4(2cos2(2x)−1)
Utilizar la identidad trigonométrica del ángulo doble: cos(2x)=2cos2(x)−1=2cos(x)+4(−1+2(2cos2(x)−1)2)
Expandir −1+2(2cos2(x)−1)2:8cos4(x)−8cos2(x)+1
−1+2(2cos2(x)−1)2
(2cos2(x)−1)2:4cos4(x)−4cos2(x)+1
Aplicar la formula del binomio al cuadrado: (a−b)2=a2−2ab+b2a=2cos2(x),b=1
=(2cos2(x))2−2⋅2cos2(x)⋅1+12
Simplificar (2cos2(x))2−2⋅2cos2(x)⋅1+12:4cos4(x)−4cos2(x)+1
(2cos2(x))2−2⋅2cos2(x)⋅1+12
Aplicar la regla 1a=112=1=(2cos2(x))2−2⋅2⋅1⋅cos2(x)+1
(2cos2(x))2=4cos4(x)
(2cos2(x))2
Aplicar las leyes de los exponentes: (a⋅b)n=anbn=22(cos2(x))2
(cos2(x))2:cos4(x)
Aplicar las leyes de los exponentes: (ab)c=abc=cos2⋅2(x)
Multiplicar los numeros: 2⋅2=4=cos4(x)
=22cos4(x)
22=4=4cos4(x)
2⋅2cos2(x)⋅1=4cos2(x)
2⋅2cos2(x)⋅1
Multiplicar los numeros: 2⋅2⋅1=4=4cos2(x)
=4cos4(x)−4cos2(x)+1
=4cos4(x)−4cos2(x)+1
=−1+2(4cos4(x)−4cos2(x)+1)
Expandir 2(4cos4(x)−4cos2(x)+1):8cos4(x)−8cos2(x)+2
2(4cos4(x)−4cos2(x)+1)
Aplicar la siguiente regla de productos notables=2⋅4cos4(x)+2(−4cos2(x))+2⋅1
Aplicar las reglas de los signos+(−a)=−a=2⋅4cos4(x)−2⋅4cos2(x)+2⋅1
Simplificar 2⋅4cos4(x)−2⋅4cos2(x)+2⋅1:8cos4(x)−8cos2(x)+2
2⋅4cos4(x)−2⋅4cos2(x)+2⋅1
Multiplicar los numeros: 2⋅4=8=8cos4(x)−8cos2(x)+2⋅1
Multiplicar los numeros: 2⋅1=2=8cos4(x)−8cos2(x)+2
=8cos4(x)−8cos2(x)+2
=−1+8cos4(x)−8cos2(x)+2
Simplificar −1+8cos4(x)−8cos2(x)+2:8cos4(x)−8cos2(x)+1
−1+8cos4(x)−8cos2(x)+2
Agrupar términos semejantes=8cos4(x)−8cos2(x)−1+2
Sumar/restar lo siguiente: −1+2=1=8cos4(x)−8cos2(x)+1
=8cos4(x)−8cos2(x)+1
=2cos(x)+4(8cos4(x)−8cos2(x)+1)
(1−8cos2(x)+8cos4(x))⋅4+2cos(x)=0
Usando el método de sustitución
(1−8cos2(x)+8cos4(x))⋅4+2cos(x)=0
Sea: cos(x)=u(1−8u2+8u4)⋅4+2u=0
(1−8u2+8u4)⋅4+2u=0:u≈−0.96459…,u≈0.87475…,u≈−0.34258…,u≈0.43242…
(1−8u2+8u4)⋅4+2u=0
Desarrollar (1−8u2+8u4)⋅4+2u:4−32u2+32u4+2u
(1−8u2+8u4)⋅4+2u
=4(1−8u2+8u4)+2u
Expandir 4(1−8u2+8u4):4−32u2+32u4
4(1−8u2+8u4)
Aplicar la siguiente regla de productos notables=4⋅1+4(−8u2)+4⋅8u4
Aplicar las reglas de los signos+(−a)=−a=4⋅1−4⋅8u2+4⋅8u4
Simplificar 4⋅1−4⋅8u2+4⋅8u4:4−32u2+32u4
4⋅1−4⋅8u2+4⋅8u4
Multiplicar los numeros: 4⋅1=4=4−4⋅8u2+4⋅8u4
Multiplicar los numeros: 4⋅8=32=4−32u2+32u4
=4−32u2+32u4
=4−32u2+32u4+2u
4−32u2+32u4+2u=0
Escribir en la forma binómica an​xn+…+a1​x+a0​=032u4−32u2+2u+4=0
Encontrar una solución para 32u4−32u2+2u+4=0 utilizando el método de Newton-Raphson:u≈−0.96459…
32u4−32u2+2u+4=0
Definición del método de Newton-Raphson
f(u)=32u4−32u2+2u+4
Hallar f′(u):128u3−64u+2
dud​(32u4−32u2+2u+4)
Aplicar la regla de la suma/diferencia: (f±g)′=f′±g′=dud​(32u4)−dud​(32u2)+dud​(2u)+dud​(4)
dud​(32u4)=128u3
dud​(32u4)
Sacar la constante: (a⋅f)′=a⋅f′=32dud​(u4)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=32⋅4u4−1
Simplificar=128u3
dud​(32u2)=64u
dud​(32u2)
Sacar la constante: (a⋅f)′=a⋅f′=32dud​(u2)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=32⋅2u2−1
Simplificar=64u
dud​(2u)=2
dud​(2u)
Sacar la constante: (a⋅f)′=a⋅f′=2dudu​
Aplicar la regla de derivación: dudu​=1=2⋅1
Simplificar=2
dud​(4)=0
dud​(4)
Derivada de una constante: dxd​(a)=0=0
=128u3−64u+2+0
Simplificar=128u3−64u+2
Sea u0​=−2Calcular un+1​ hasta que Δun+1​<0.000001
u1​=−1.57046…:Δu1​=0.42953…
f(u0​)=32(−2)4−32(−2)2+2(−2)+4=384f′(u0​)=128(−2)3−64(−2)+2=−894u1​=−1.57046…
Δu1​=∣−1.57046…−(−2)∣=0.42953…Δu1​=0.42953…
u2​=−1.27401…:Δu2​=0.29645…
f(u1​)=32(−1.57046…)4−32(−1.57046…)2+2(−1.57046…)+4=116.59128…f′(u1​)=128(−1.57046…)3−64(−1.57046…)+2=−393.28104…u2​=−1.27401…
Δu2​=∣−1.27401…−(−1.57046…)∣=0.29645…Δu2​=0.29645…
u3​=−1.08733…:Δu3​=0.18667…
f(u2​)=32(−1.27401…)4−32(−1.27401…)2+2(−1.27401…)+4=33.81573…f′(u2​)=128(−1.27401…)3−64(−1.27401…)+2=−181.14887…u3​=−1.08733…
Δu3​=∣−1.08733…−(−1.27401…)∣=0.18667…Δu3​=0.18667…
u4​=−0.99350…:Δu4​=0.09382…
f(u3​)=32(−1.08733…)4−32(−1.08733…)2+2(−1.08733…)+4=8.72257…f′(u3​)=128(−1.08733…)3−64(−1.08733…)+2=−92.96260…u4​=−0.99350…
Δu4​=∣−0.99350…−(−1.08733…)∣=0.09382…Δu4​=0.09382…
u5​=−0.96674…:Δu5​=0.02676…
f(u4​)=32(−0.99350…)4−32(−0.99350…)2+2(−0.99350…)+4=1.60428…f′(u4​)=128(−0.99350…)3−64(−0.99350…)+2=−59.93911…u5​=−0.96674…
Δu5​=∣−0.96674…−(−0.99350…)∣=0.02676…Δu5​=0.02676…
u6​=−0.96461…:Δu6​=0.00213…
f(u5​)=32(−0.96674…)4−32(−0.96674…)2+2(−0.96674…)+4=0.11041…f′(u5​)=128(−0.96674…)3−64(−0.96674…)+2=−51.77809…u6​=−0.96461…
Δu6​=∣−0.96461…−(−0.96674…)∣=0.00213…Δu6​=0.00213…
u7​=−0.96459…:Δu7​=0.00001…
f(u6​)=32(−0.96461…)4−32(−0.96461…)2+2(−0.96461…)+4=0.00066…f′(u6​)=128(−0.96461…)3−64(−0.96461…)+2=−51.15092…u7​=−0.96459…
Δu7​=∣−0.96459…−(−0.96461…)∣=0.00001…Δu7​=0.00001…
u8​=−0.96459…:Δu8​=4.90935E−10
f(u7​)=32(−0.96459…)4−32(−0.96459…)2+2(−0.96459…)+4=2.51099E−8f′(u7​)=128(−0.96459…)3−64(−0.96459…)+2=−51.14709…u8​=−0.96459…
Δu8​=∣−0.96459…−(−0.96459…)∣=4.90935E−10Δu8​=4.90935E−10
u≈−0.96459…
Aplicar la división larga Equation0:u+0.96459…32u4−32u2+2u+4​=32u3−30.86715…u2−2.22559…u+4.14680…
32u3−30.86715…u2−2.22559…u+4.14680…≈0
Encontrar una solución para 32u3−30.86715…u2−2.22559…u+4.14680…=0 utilizando el método de Newton-Raphson:u≈0.87475…
32u3−30.86715…u2−2.22559…u+4.14680…=0
Definición del método de Newton-Raphson
f(u)=32u3−30.86715…u2−2.22559…u+4.14680…
Hallar f′(u):96u2−61.73430…u−2.22559…
dud​(32u3−30.86715…u2−2.22559…u+4.14680…)
Aplicar la regla de la suma/diferencia: (f±g)′=f′±g′=dud​(32u3)−dud​(30.86715…u2)−dud​(2.22559…u)+dud​(4.14680…)
dud​(32u3)=96u2
dud​(32u3)
Sacar la constante: (a⋅f)′=a⋅f′=32dud​(u3)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=32⋅3u3−1
Simplificar=96u2
dud​(30.86715…u2)=61.73430…u
dud​(30.86715…u2)
Sacar la constante: (a⋅f)′=a⋅f′=30.86715…dud​(u2)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=30.86715…⋅2u2−1
Simplificar=61.73430…u
dud​(2.22559…u)=2.22559…
dud​(2.22559…u)
Sacar la constante: (a⋅f)′=a⋅f′=2.22559…dudu​
Aplicar la regla de derivación: dudu​=1=2.22559…⋅1
Simplificar=2.22559…
dud​(4.14680…)=0
dud​(4.14680…)
Derivada de una constante: dxd​(a)=0=0
=96u2−61.73430…u−2.22559…+0
Simplificar=96u2−61.73430…u−2.22559…
Sea u0​=2Calcular un+1​ hasta que Δun+1​<0.000001
u1​=1.48809…:Δu1​=0.51190…
f(u0​)=32⋅23−30.86715…⋅22−2.22559…⋅2+4.14680…=132.22701…f′(u0​)=96⋅22−61.73430…⋅2−2.22559…=258.30580…u1​=1.48809…
Δu1​=∣1.48809…−2∣=0.51190…Δu1​=0.51190…
u2​=1.16798…:Δu2​=0.32011…
f(u1​)=32⋅1.48809…3−30.86715…⋅1.48809…2−2.22559…⋅1.48809…+4.14680…=37.93120…f′(u1​)=96⋅1.48809…2−61.73430…⋅1.48809…−2.22559…=118.49374…u2​=1.16798…
Δu2​=∣1.16798…−1.48809…∣=0.32011…Δu2​=0.32011…
u3​=0.98388…:Δu3​=0.18410…
f(u2​)=32⋅1.16798…3−30.86715…⋅1.16798…2−2.22559…⋅1.16798…+4.14680…=10.42612…f′(u2​)=96⋅1.16798…2−61.73430…⋅1.16798…−2.22559…=56.63221…u3​=0.98388…
Δu3​=∣0.98388…−1.16798…∣=0.18410…Δu3​=0.18410…
u4​=0.89863…:Δu4​=0.08524…
f(u3​)=32⋅0.98388…3−30.86715…⋅0.98388…2−2.22559…⋅0.98388…+4.14680…=2.55451…f′(u3​)=96⋅0.98388…2−61.73430…⋅0.98388…−2.22559…=29.96580…u4​=0.89863…
Δu4​=∣0.89863…−0.98388…∣=0.08524…Δu4​=0.08524…
u5​=0.87632…:Δu5​=0.02231…
f(u4​)=32⋅0.89863…3−30.86715…⋅0.89863…2−2.22559…⋅0.89863…+4.14680…=0.44226…f′(u4​)=96⋅0.89863…2−61.73430…⋅0.89863…−2.22559…=19.82237…u5​=0.87632…
Δu5​=∣0.87632…−0.89863…∣=0.02231…Δu5​=0.02231…
u6​=0.87476…:Δu6​=0.00156…
f(u5​)=32⋅0.87632…3−30.86715…⋅0.87632…2−2.22559…⋅0.87632…+4.14680…=0.02722…f′(u5​)=96⋅0.87632…2−61.73430…⋅0.87632…−2.22559…=17.39797…u6​=0.87476…
Δu6​=∣0.87476…−0.87632…∣=0.00156…Δu6​=0.00156…
u7​=0.87475…:Δu7​=7.56069E−6
f(u6​)=32⋅0.87476…3−30.86715…⋅0.87476…2−2.22559…⋅0.87476…+4.14680…=0.00013…f′(u6​)=96⋅0.87476…2−61.73430…⋅0.87476…−2.22559…=17.23152…u7​=0.87475…
Δu7​=∣0.87475…−0.87476…∣=7.56069E−6Δu7​=7.56069E−6
u8​=0.87475…:Δu8​=1.76195E−10
f(u7​)=32⋅0.87475…3−30.86715…⋅0.87475…2−2.22559…⋅0.87475…+4.14680…=3.03597E−9f′(u7​)=96⋅0.87475…2−61.73430…⋅0.87475…−2.22559…=17.23072…u8​=0.87475…
Δu8​=∣0.87475…−0.87475…∣=1.76195E−10Δu8​=1.76195E−10
u≈0.87475…
Aplicar la división larga Equation0:u−0.87475…32u3−30.86715…u2−2.22559…u+4.14680…​=32u2−2.87503…u−4.74053…
32u2−2.87503…u−4.74053…≈0
Encontrar una solución para 32u2−2.87503…u−4.74053…=0 utilizando el método de Newton-Raphson:u≈−0.34258…
32u2−2.87503…u−4.74053…=0
Definición del método de Newton-Raphson
f(u)=32u2−2.87503…u−4.74053…
Hallar f′(u):64u−2.87503…
dud​(32u2−2.87503…u−4.74053…)
Aplicar la regla de la suma/diferencia: (f±g)′=f′±g′=dud​(32u2)−dud​(2.87503…u)−dud​(4.74053…)
dud​(32u2)=64u
dud​(32u2)
Sacar la constante: (a⋅f)′=a⋅f′=32dud​(u2)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=32⋅2u2−1
Simplificar=64u
dud​(2.87503…u)=2.87503…
dud​(2.87503…u)
Sacar la constante: (a⋅f)′=a⋅f′=2.87503…dudu​
Aplicar la regla de derivación: dudu​=1=2.87503…⋅1
Simplificar=2.87503…
dud​(4.74053…)=0
dud​(4.74053…)
Derivada de una constante: dxd​(a)=0=0
=64u−2.87503…−0
Simplificar=64u−2.87503…
Sea u0​=−2Calcular un+1​ hasta que Δun+1​<0.000001
u1​=−1.01425…:Δu1​=0.98574…
f(u0​)=32(−2)2−2.87503…(−2)−4.74053…=129.00952…f′(u0​)=64(−2)−2.87503…=−130.87503…u1​=−1.01425…
Δu1​=∣−1.01425…−(−2)∣=0.98574…Δu1​=0.98574…
u2​=−0.55555…:Δu2​=0.45870…
f(u1​)=32(−1.01425…)2−2.87503…(−1.01425…)−4.74053…=31.09423…f′(u1​)=64(−1.01425…)−2.87503…=−67.78729…u2​=−0.55555…
Δu2​=∣−0.55555…−(−1.01425…)∣=0.45870…Δu2​=0.45870…
u3​=−0.38034…:Δu3​=0.17520…
f(u2​)=32(−0.55555…)2−2.87503…(−0.55555…)−4.74053…=6.73307…f′(u2​)=64(−0.55555…)−2.87503…=−38.43029…u3​=−0.38034…
Δu3​=∣−0.38034…−(−0.55555…)∣=0.17520…Δu3​=0.17520…
u4​=−0.34425…:Δu4​=0.03608…
f(u3​)=32(−0.38034…)2−2.87503…(−0.38034…)−4.74053…=0.98226…f′(u3​)=64(−0.38034…)−2.87503…=−27.21735…u4​=−0.34425…
Δu4​=∣−0.34425…−(−0.38034…)∣=0.03608…Δu4​=0.03608…
u5​=−0.34258…:Δu5​=0.00167…
f(u4​)=32(−0.34425…)2−2.87503…(−0.34425…)−4.74053…=0.04167…f′(u4​)=64(−0.34425…)−2.87503…=−24.90762…u5​=−0.34258…
Δu5​=∣−0.34258…−(−0.34425…)∣=0.00167…Δu5​=0.00167…
u6​=−0.34258…:Δu6​=3.6129E−6
f(u5​)=32(−0.34258…)2−2.87503…(−0.34258…)−4.74053…=0.00008…f′(u5​)=64(−0.34258…)−2.87503…=−24.80052…u6​=−0.34258…
Δu6​=∣−0.34258…−(−0.34258…)∣=3.6129E−6Δu6​=3.6129E−6
u7​=−0.34258…:Δu7​=1.68425E−11
f(u6​)=32(−0.34258…)2−2.87503…(−0.34258…)−4.74053…=4.17699E−10f′(u6​)=64(−0.34258…)−2.87503…=−24.80029…u7​=−0.34258…
Δu7​=∣−0.34258…−(−0.34258…)∣=1.68425E−11Δu7​=1.68425E−11
u≈−0.34258…
Aplicar la división larga Equation0:u+0.34258…32u2−2.87503…u−4.74053…​=32u−13.83766…
32u−13.83766…≈0
u≈0.43242…
Las soluciones sonu≈−0.96459…,u≈0.87475…,u≈−0.34258…,u≈0.43242…
Sustituir en la ecuación u=cos(x)cos(x)≈−0.96459…,cos(x)≈0.87475…,cos(x)≈−0.34258…,cos(x)≈0.43242…
cos(x)≈−0.96459…,cos(x)≈0.87475…,cos(x)≈−0.34258…,cos(x)≈0.43242…
cos(x)=−0.96459…:x=arccos(−0.96459…)+2πn,x=−arccos(−0.96459…)+2πn
cos(x)=−0.96459…
Aplicar propiedades trigonométricas inversas
cos(x)=−0.96459…
Soluciones generales para cos(x)=−0.96459…cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−0.96459…)+2πn,x=−arccos(−0.96459…)+2πn
x=arccos(−0.96459…)+2πn,x=−arccos(−0.96459…)+2πn
cos(x)=0.87475…:x=arccos(0.87475…)+2πn,x=2π−arccos(0.87475…)+2πn
cos(x)=0.87475…
Aplicar propiedades trigonométricas inversas
cos(x)=0.87475…
Soluciones generales para cos(x)=0.87475…cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(0.87475…)+2πn,x=2π−arccos(0.87475…)+2πn
x=arccos(0.87475…)+2πn,x=2π−arccos(0.87475…)+2πn
cos(x)=−0.34258…:x=arccos(−0.34258…)+2πn,x=−arccos(−0.34258…)+2πn
cos(x)=−0.34258…
Aplicar propiedades trigonométricas inversas
cos(x)=−0.34258…
Soluciones generales para cos(x)=−0.34258…cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−0.34258…)+2πn,x=−arccos(−0.34258…)+2πn
x=arccos(−0.34258…)+2πn,x=−arccos(−0.34258…)+2πn
cos(x)=0.43242…:x=arccos(0.43242…)+2πn,x=2π−arccos(0.43242…)+2πn
cos(x)=0.43242…
Aplicar propiedades trigonométricas inversas
cos(x)=0.43242…
Soluciones generales para cos(x)=0.43242…cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(0.43242…)+2πn,x=2π−arccos(0.43242…)+2πn
x=arccos(0.43242…)+2πn,x=2π−arccos(0.43242…)+2πn
Combinar toda las solucionesx=arccos(−0.96459…)+2πn,x=−arccos(−0.96459…)+2πn,x=arccos(0.87475…)+2πn,x=2π−arccos(0.87475…)+2πn,x=arccos(−0.34258…)+2πn,x=−arccos(−0.34258…)+2πn,x=arccos(0.43242…)+2πn,x=2π−arccos(0.43242…)+2πn
Mostrar soluciones en forma decimalx=2.87471…+2πn,x=−2.87471…+2πn,x=0.50586…+2πn,x=2π−0.50586…+2πn,x=1.92046…+2πn,x=−1.92046…+2πn,x=1.12361…+2πn,x=2π−1.12361…+2πn

Gráfica

Sorry, your browser does not support this application
Ver gráfico interactivo

Ejemplos populares

tan(θ)= 24/7sin(x)=0.18,0<= x<2pi3cos(x)=sin(x)verificar tan(135+x)=(tan(x)-1)/(tan(x)+1)sinh(x)= 36/77
Herramientas de estudioSolucionador Matemático de IAProblemas popularesHojas de trabajoPracticaHojas de referenciaCalculadorasCalculadora gráficaCalculadora de GeometríaVerificar solución
AplicacionesAplicación Symbolab (Android)Calculadora gráfica (Android)Practica (Android)Aplicación Symbolab (iOS)Calculadora gráfica (iOS)Practica (iOS)Extensión de ChromeSymbolab Math Solver API
EmpresaAcerca de SymbolabBlogAyuda
LegalPrivacidadTérminosPolítica de cookiesConfiguración de CookiesNo vendas ni compartas mi información personalCopyright, Guías Comunitarias, DSA & otros recursos legalesCentro Legal de Learneo
Redes sociales
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024