Lösung
Lösung
+1
Dezimale
Schritte zur Lösung
Umschreiben mit Hilfe von Trigonometrie-Identitäten:
Verwende die folgenden Identitäten:
Vereinfache:
kleinstes gemeinsames Vielfache von
kleinstes gemeinsams Vielfaches (kgV)
Primfaktorzerlegung von
ist eine Primzahl, deshalb ist keine Faktorisierung möglich
Primfaktorzerlegung von
ist durch teilbar
sind alles Primzahlen, deshalb ist keine weitere Zerlegung möglich
Multipliziere jeden Faktor mit der Anzahl wie häufig er in oder vorkommt
Multipliziere die Zahlen:
Passe die Brüche mit Hilfe des kgV an
Multipliziere jeden Zähler mit der gleichen Betrag, die für den entsprechenden Nenner erforderlich ist,
um ihn in das kgV umzuwandeln
Für multipliziere den Nenner und Zähler mit
Da die Nenner gleich sind, fasse die Brüche zusammen.:
Addiere gleiche Elemente:
Streiche die gemeinsamen Faktoren:
Umschreiben mit Hilfe von Trigonometrie-Identitäten:
Zeige dass:
Verwende das folgende Produkt, um die Summe der Identitäten zu finden:
Zeige dass:
Verwende die Doppelwinkelidentität:
Teile beide Seiten durch
Verwende die folgenden Identitäten:
Teile beide Seiten durch
Teile beide Seiten durch
Ersetze
Zeige dass:
Wende die Faktorisierungsregel an:
Fasse zusammen
Zeige dass:
Verwende die Doppelwinkelidentität:
Teile beide Seiten durch
Verwende die folgenden Identitäten:
Teile beide Seiten durch
Teile beide Seiten durch
Ersetze
Ersetze
Fasse zusammen
Füge zu beiden Seiten hinzu
Fasse zusammen
Ziehe die Quadratwurzel auf beiden Seiten
darf nicht negativ seindarf nicht negativ sein
Füge die folgenden Gleichungen hinzu
Fasse zusammen
Quadriere beide Seiten
Verwende die folgenden Identitäten:
Ersetze
Fasse zusammen
Ziehe die Quadratwurzel auf beiden Seiten
darf nicht negativ sein
Fasse zusammen
Wende Radikal Regel an: angenommen
Wende Bruchregel an:
Rationalisiere
Multipliziere mit dem Konjugat
Wende Exponentenregel an:
Addiere gleiche Elemente:
Multipliziere Brüche:
Streiche die gemeinsamen Faktoren:
Addiere die Zahlen: