Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sec^2(x)<= 4/3

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sec2(x)≤34​

Solution

−6π​+2πn≤x≤6π​+2πnor65π​+2πn≤x≤67π​+2πn
+2
Interval Notation
[−6π​+2πn,6π​+2πn]∪[65π​+2πn,67π​+2πn]
Decimal
−0.52359…+2πn≤x≤0.52359…+2πnor2.61799…+2πn≤x≤3.66519…+2πn
Solution steps
sec2(x)≤34​
Express with sin, cos
sec2(x)≤34​
Use the basic trigonometric identity: sec(x)=cos(x)1​(cos(x)1​)2≤34​
(cos(x)1​)2≤34​
For un≤a, if nis even then
−34​​≤cos(x)1​≤34​​
If a≤u≤bthen a≤uandu≤b−34​​≤cos(x)1​andcos(x)1​≤34​​
−34​​≤cos(x)1​:cos(x)≤−23​​orcos(x)>0
−34​​≤cos(x)1​
Switch sidescos(x)1​≥−34​​
Rewrite in standard form
cos(x)1​≥−34​​
Add 34​​ to both sidescos(x)1​+34​​≥−34​​+34​​
Simplifycos(x)1​+34​​≥−34​​+34​​
Simplify cos(x)1​+34​​:cos(x)1​+3​2​
cos(x)1​+34​​
34​​=3​2​
34​​
Apply radical rule: assuming a≥0,b≥0=3​4​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=3​2​
=cos(x)1​+3​2​
cos(x)1​+3​2​≥0
Simplify cos(x)1​+3​2​:3cos(x)3​(3​+2cos(x))​
cos(x)1​+3​2​
Least Common Multiplier of cos(x),3​:3​cos(x)
cos(x),3​
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in cos(x) or 3​=3​cos(x)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 3​cos(x)
For cos(x)1​:multiply the denominator and numerator by 3​cos(x)1​=cos(x)3​1⋅3​​=3​cos(x)3​​
For 3​2​:multiply the denominator and numerator by cos(x)3​2​=3​cos(x)2cos(x)​
=3​cos(x)3​​+3​cos(x)2cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3​cos(x)3​+2cos(x)​
Rationalize 3​cos(x)3​+2cos(x)​:3cos(x)3​(2cos(x)+3​)​
3​cos(x)3​+2cos(x)​
Multiply by the conjugate 3​3​​=3​cos(x)3​(3​+2cos(x))3​​
3​cos(x)3​=3cos(x)
3​cos(x)3​
Apply radical rule: a​a​=a3​3​=3=3cos(x)
=3cos(x)3​(3​+2cos(x))​
=3cos(x)3​(2cos(x)+3​)​
3cos(x)3​(3​+2cos(x))​≥0
Simplify 33​​:3​1​
33​​
Apply radical rule: 3​=321​=3321​​
Apply exponent rule: xbxa​=xb−a1​31321​​=31−21​1​=31−21​1​
Subtract the numbers: 1−21​=21​=321​1​
Apply radical rule: 321​=3​=3​1​
3cos(x)3​(3​+2cos(x))​≥0
Multiply both sides by 3​3cos(x)3​(3​+2cos(x))3​​≥0⋅3​
Simplifycos(x)3​+2cos(x)​≥0
cos(x)3​+2cos(x)​≥0
Identify the intervals
Find the signs of the factors of cos(x)3​+2cos(x)​
Find the signs of 3​+2cos(x)
3​+2cos(x)=0:cos(x)=−23​​
3​+2cos(x)=0
Move 3​to the right side
3​+2cos(x)=0
Subtract 3​ from both sides3​+2cos(x)−3​=0−3​
Simplify2cos(x)=−3​
2cos(x)=−3​
Divide both sides by 2
2cos(x)=−3​
Divide both sides by 222cos(x)​=2−3​​
Simplifycos(x)=−23​​
cos(x)=−23​​
3​+2cos(x)<0:cos(x)<−23​​
3​+2cos(x)<0
Move 3​to the right side
3​+2cos(x)<0
Subtract 3​ from both sides3​+2cos(x)−3​<0−3​
Simplify2cos(x)<−3​
2cos(x)<−3​
Divide both sides by 2
2cos(x)<−3​
Divide both sides by 222cos(x)​<2−3​​
Simplifycos(x)<−23​​
cos(x)<−23​​
3​+2cos(x)>0:cos(x)>−23​​
3​+2cos(x)>0
Move 3​to the right side
3​+2cos(x)>0
Subtract 3​ from both sides3​+2cos(x)−3​>0−3​
Simplify2cos(x)>−3​
2cos(x)>−3​
Divide both sides by 2
2cos(x)>−3​
Divide both sides by 222cos(x)​>2−3​​
Simplifycos(x)>−23​​
cos(x)>−23​​
Find the signs of cos(x)
cos(x)=0
cos(x)<0
cos(x)>0
Find singularity points
Find the zeros of the denominator cos(x):cos(x)=0
Summarize in a table:3​+2cos(x)cos(x)cos(x)3​+2cos(x)​​cos(x)<−23​​−−+​cos(x)=−23​​0−0​−23​​<cos(x)<0+−−​cos(x)=0+0Undefined​cos(x)>0+++​​
Identify the intervals that satisfy the required condition: ≥0cos(x)<−23​​orcos(x)=−23​​orcos(x)>0
Merge Overlapping Intervals
cos(x)≤−23​​orcos(x)>0
The union of two intervals is the set of numbers which are in either interval
cos(x)<−23​​orcos(x)=−23​​
cos(x)≤−23​​
The union of two intervals is the set of numbers which are in either interval
cos(x)≤−23​​orcos(x)>0
cos(x)≤−23​​orcos(x)>0
cos(x)≤−23​​orcos(x)>0
cos(x)≤−23​​orcos(x)>0
cos(x)1​≤34​​:cos(x)<0orcos(x)≥23​​
cos(x)1​≤34​​
Rewrite in standard form
cos(x)1​≤34​​
Subtract 34​​ from both sidescos(x)1​−34​​≤34​​−34​​
Simplifycos(x)1​−34​​≤34​​−34​​
Simplify cos(x)1​−34​​:cos(x)1​−3​2​
cos(x)1​−34​​
34​​=3​2​
34​​
Apply radical rule: assuming a≥0,b≥0=3​4​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=3​2​
=cos(x)1​−3​2​
cos(x)1​−3​2​≤0
Simplify cos(x)1​−3​2​:3cos(x)3​(3​−2cos(x))​
cos(x)1​−3​2​
Least Common Multiplier of cos(x),3​:3​cos(x)
cos(x),3​
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in cos(x) or 3​=3​cos(x)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 3​cos(x)
For cos(x)1​:multiply the denominator and numerator by 3​cos(x)1​=cos(x)3​1⋅3​​=3​cos(x)3​​
For 3​2​:multiply the denominator and numerator by cos(x)3​2​=3​cos(x)2cos(x)​
=3​cos(x)3​​−3​cos(x)2cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=3​cos(x)3​−2cos(x)​
Rationalize 3​cos(x)3​−2cos(x)​:3cos(x)3​(−2cos(x)+3​)​
3​cos(x)3​−2cos(x)​
Multiply by the conjugate 3​3​​=3​cos(x)3​(3​−2cos(x))3​​
3​cos(x)3​=3cos(x)
3​cos(x)3​
Apply radical rule: a​a​=a3​3​=3=3cos(x)
=3cos(x)3​(3​−2cos(x))​
=3cos(x)3​(−2cos(x)+3​)​
3cos(x)3​(3​−2cos(x))​≤0
Simplify 33​​:3​1​
33​​
Apply radical rule: 3​=321​=3321​​
Apply exponent rule: xbxa​=xb−a1​31321​​=31−21​1​=31−21​1​
Subtract the numbers: 1−21​=21​=321​1​
Apply radical rule: 321​=3​=3​1​
3cos(x)3​(3​−2cos(x))​≤0
Multiply both sides by 3​3cos(x)3​(3​−2cos(x))3​​≤0⋅3​
Simplifycos(x)3​−2cos(x)​≤0
cos(x)3​−2cos(x)​≤0
Identify the intervals
Find the signs of the factors of cos(x)3​−2cos(x)​
Find the signs of 3​−2cos(x)
3​−2cos(x)=0:cos(x)=23​​
3​−2cos(x)=0
Move 3​to the right side
3​−2cos(x)=0
Subtract 3​ from both sides3​−2cos(x)−3​=0−3​
Simplify−2cos(x)=−3​
−2cos(x)=−3​
Divide both sides by −2
−2cos(x)=−3​
Divide both sides by −2−2−2cos(x)​=−2−3​​
Simplifycos(x)=23​​
cos(x)=23​​
3​−2cos(x)<0:cos(x)>23​​
3​−2cos(x)<0
Move 3​to the right side
3​−2cos(x)<0
Subtract 3​ from both sides3​−2cos(x)−3​<0−3​
Simplify−2cos(x)<−3​
−2cos(x)<−3​
Multiply both sides by −1
−2cos(x)<−3​
Multiply both sides by -1 (reverse the inequality)(−2cos(x))(−1)>(−3​)(−1)
Simplify2cos(x)>3​
2cos(x)>3​
Divide both sides by 2
2cos(x)>3​
Divide both sides by 222cos(x)​>23​​
Simplifycos(x)>23​​
cos(x)>23​​
3​−2cos(x)>0:cos(x)<23​​
3​−2cos(x)>0
Move 3​to the right side
3​−2cos(x)>0
Subtract 3​ from both sides3​−2cos(x)−3​>0−3​
Simplify−2cos(x)>−3​
−2cos(x)>−3​
Multiply both sides by −1
−2cos(x)>−3​
Multiply both sides by -1 (reverse the inequality)(−2cos(x))(−1)<(−3​)(−1)
Simplify2cos(x)<3​
2cos(x)<3​
Divide both sides by 2
2cos(x)<3​
Divide both sides by 222cos(x)​<23​​
Simplifycos(x)<23​​
cos(x)<23​​
Find the signs of cos(x)
cos(x)=0
cos(x)<0
cos(x)>0
Find singularity points
Find the zeros of the denominator cos(x):cos(x)=0
Summarize in a table:3​−2cos(x)cos(x)cos(x)3​−2cos(x)​​cos(x)<0+−−​cos(x)=0+0Undefined​0<cos(x)<23​​+++​cos(x)=23​​0+0​cos(x)>23​​−+−​​
Identify the intervals that satisfy the required condition: ≤0cos(x)<0orcos(x)=23​​orcos(x)>23​​
Merge Overlapping Intervals
cos(x)<0orcos(x)=23​​orcos(x)>23​​
The union of two intervals is the set of numbers which are in either interval
cos(x)<0orcos(x)=23​​
cos(x)<0orcos(x)=23​​
The union of two intervals is the set of numbers which are in either interval
cos(x)<0orcos(x)=23​​orcos(x)>23​​
cos(x)<0orcos(x)≥23​​
cos(x)<0orcos(x)≥23​​
cos(x)<0orcos(x)≥23​​
Combine the intervals(cos(x)≤−23​​orcos(x)>0)and(cos(x)<0orcos(x)≥23​​)
Merge Overlapping Intervals
cos(x)≤−23​​orcos(x)>0andcos(x)<0orcos(x)≥23​​
The intersection of two intervals is the set of numbers which are in both intervals
cos(x)≤−23​​orcos(x)>0andcos(x)<0orcos(x)≥23​​
cos(x)≤−23​​orcos(x)≥23​​
cos(x)≤−23​​orcos(x)≥23​​
cos(x)≤−23​​:65π​+2πn≤x≤67π​+2πn
cos(x)≤−23​​
For cos(x)≤a, if −1<a<1 then arccos(a)+2πn≤x≤2π−arccos(a)+2πnarccos(−23​​)+2πn≤x≤2π−arccos(−23​​)+2πn
Simplify arccos(−23​​):65π​
arccos(−23​​)
Use the following trivial identity:arccos(−23​​)=65π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=65π​
Simplify 2π−arccos(−23​​):67π​
2π−arccos(−23​​)
Use the following trivial identity:arccos(−23​​)=65π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=2π−65π​
Simplify
2π−65π​
Convert element to fraction: 2π=62π6​=62π6​−65π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=62π6−5π​
2π6−5π=7π
2π6−5π
Multiply the numbers: 2⋅6=12=12π−5π
Add similar elements: 12π−5π=7π=7π
=67π​
=67π​
65π​+2πn≤x≤67π​+2πn
cos(x)≥23​​:−6π​+2πn≤x≤6π​+2πn
cos(x)≥23​​
For cos(x)≥a, if −1<a<1 then −arccos(a)+2πn≤x≤arccos(a)+2πn−arccos(23​​)+2πn≤x≤arccos(23​​)+2πn
Simplify −arccos(23​​):−6π​
−arccos(23​​)
Use the following trivial identity:arccos(23​​)=6π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=−6π​
Simplify arccos(23​​):6π​
arccos(23​​)
Use the following trivial identity:arccos(23​​)=6π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=6π​
−6π​+2πn≤x≤6π​+2πn
Combine the intervals65π​+2πn≤x≤67π​+2πnor−6π​+2πn≤x≤6π​+2πn
Merge Overlapping Intervals−6π​+2πn≤x≤6π​+2πnor65π​+2πn≤x≤67π​+2πn

Popular Examples

cos(x)>(sqrt(3))/2sin^2(x)< 1/2sin(x)<= 1tan(x)>= 0sin(x)+cos(x)>0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024