Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(2sin(θ)cos(θ))/((3cos^2(θ)+1))>= 16/45

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

(3cos2(θ)+1)2sin(θ)cos(θ)​≥4516​

Solution

πn≤θ≤2π​+πn
+2
Interval Notation
[πn,2π​+πn]
Decimal
πn≤θ≤1.57079…+πn
Solution steps
3cos2(θ)+12sin(θ)cos(θ)​≥4516​
Use the following identity: cos2(x)+sin2(x)=1Therefore cos2(x)=1−sin2(x)3(1−sin2(θ))+12sin(θ)cos(θ)​≥4516​
Simplify 3(1−sin2(θ))+12sin(θ)cos(θ)​:−3sin2(θ)+42sin(θ)cos(θ)​
3(1−sin2(θ))+12sin(θ)cos(θ)​
Expand 3(1−sin2(θ))+1:−3sin2(θ)+4
3(1−sin2(θ))+1
Expand 3(1−sin2(θ)):3−3sin2(θ)
3(1−sin2(θ))
Apply the distributive law: a(b−c)=ab−aca=3,b=1,c=sin2(θ)=3⋅1−3sin2(θ)
Multiply the numbers: 3⋅1=3=3−3sin2(θ)
=3−3sin2(θ)+1
Simplify 3−3sin2(θ)+1:−3sin2(θ)+4
3−3sin2(θ)+1
Group like terms=−3sin2(θ)+3+1
Add the numbers: 3+1=4=−3sin2(θ)+4
=−3sin2(θ)+4
=−3sin2(θ)+42sin(θ)cos(θ)​
−3sin2(θ)+42sin(θ)cos(θ)​≥4516​
Periodicity of −3sin2(θ)+42sin(θ)cos(θ)​:π
−3sin2(θ)+42sin(θ)cos(θ)​is composed of the following functions and periods:sin(θ)with periodicity of 2π
The compound periodicity is:=π
Find the zeroes and undifined points of −3sin2(θ)+42sin(θ)cos(θ)​for 0≤θ<π
To find the zeroes, set the inequality to zero−3sin2(θ)+42sin(θ)cos(θ)​=0
−3sin2(θ)+42sin(θ)cos(θ)​=0,0≤θ<π:θ=0,θ=2π​
−3sin2(θ)+42sin(θ)cos(θ)​=0,0≤θ<π
g(x)f(x)​=0⇒f(x)=02sin(θ)cos(θ)=0
Solving each part separatelysin(θ)=0orcos(θ)=0
sin(θ)=0,0≤θ<π:θ=0
sin(θ)=0,0≤θ<π
General solutions for sin(θ)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
θ=0+2πn,θ=π+2πn
θ=0+2πn,θ=π+2πn
Solve θ=0+2πn:θ=2πn
θ=0+2πn
0+2πn=2πnθ=2πn
θ=2πn,θ=π+2πn
Solutions for the range 0≤θ<πθ=0
cos(θ)=0,0≤θ<π:θ=2π​
cos(θ)=0,0≤θ<π
General solutions for cos(θ)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
θ=2π​+2πn,θ=23π​+2πn
θ=2π​+2πn,θ=23π​+2πn
Solutions for the range 0≤θ<πθ=2π​
Combine all the solutionsθ=0,θ=2π​
Find the undefined points:No Solution
Find the zeros of the denominator−3sin2(θ)+4=0
Solve by substitution
−3sin2(θ)+4=0
Let: sin(θ)=u−3u2+4=0
−3u2+4=0:u=323​​,u=−323​​
−3u2+4=0
Move 4to the right side
−3u2+4=0
Subtract 4 from both sides−3u2+4−4=0−4
Simplify−3u2=−4
−3u2=−4
Divide both sides by −3
−3u2=−4
Divide both sides by −3−3−3u2​=−3−4​
Simplifyu2=34​
u2=34​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=34​​,u=−34​​
34​​=323​​
34​​
Apply radical rule: assuming a≥0,b≥0=3​4​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=3​2​
Rationalize 3​2​:323​​
3​2​
Multiply by the conjugate 3​3​​=3​3​23​​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=323​​
=323​​
−34​​=−323​​
−34​​
Simplify 34​​:3​2​
34​​
Apply radical rule: assuming a≥0,b≥0=3​4​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=3​2​
=−3​2​
Rationalize −3​2​:−323​​
−3​2​
Multiply by the conjugate 3​3​​=−3​3​23​​
3​3​=3
3​3​
Apply radical rule: a​a​=a3​3​=3=3
=−323​​
=−323​​
u=323​​,u=−323​​
Substitute back u=sin(θ)sin(θ)=323​​,sin(θ)=−323​​
sin(θ)=323​​,sin(θ)=−323​​
sin(θ)=323​​,0≤θ<π:No Solution
sin(θ)=323​​,0≤θ<π
−1≤sin(x)≤1NoSolution
sin(θ)=−323​​,0≤θ<π:No Solution
sin(θ)=−323​​,0≤θ<π
−1≤sin(x)≤1NoSolution
Combine all the solutionsNoSolutionforθ∈R
0,2π​
Identify the intervals0<θ<2π​,2π​<θ<π
Summarize in a table:sin(θ)cos(θ)−3sin2(θ)+4−3sin2(θ)+42sin(θ)cos(θ)​​θ=00++0​0<θ<2π​++++​θ=2π​+0+0​2π​<θ<π+−+−​θ=π0−+0​​
Identify the intervals that satisfy the required condition: ≥0θ=0or0<θ<2π​orθ=2π​orθ=π
Merge Overlapping Intervals
0≤θ≤2π​orθ=π
The union of two intervals is the set of numbers which are in either interval
θ=0or0<θ<2π​
0≤θ<2π​
The union of two intervals is the set of numbers which are in either interval
0≤θ<2π​orθ=2π​
0≤θ≤2π​
The union of two intervals is the set of numbers which are in either interval
0≤θ≤2π​orθ=π
0≤θ≤2π​orθ=π
0≤θ≤2π​orθ=π
Apply the periodicity of −3sin2(θ)+42sin(θ)cos(θ)​πn≤θ≤2π​+πn

Popular Examples

cos(2t)>=-1/2-(-1-cos(t))>0cos(x/2)>01/2 >sin(x/2)sin(x)<(-sqrt(3))/2
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024