Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(3x)cos(3x)-1/4 >0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(3x)cos(3x)−41​>0

Solution

36π​+3π​n<x<365π​+3π​n
+2
Interval Notation
(36π​+3π​n,365π​+3π​n)
Decimal
0.08726…+3π​n<x<0.43633…+3π​n
Solution steps
sin(3x)cos(3x)−41​>0
Use the following identity: 2cos(x)sin(x)=sin(2x)Therefore cos(x)sin(x)=2sin(2x)​−41​+2sin(2⋅3x)​>0
Simplify −41​+2sin(2⋅3x)​:−41​+21​sin(6x)
−41​+2sin(2⋅3x)​
Multiply the numbers: 2⋅3=6=−41​+2sin(6x)​
=−41​+21​sin(6x)
−41​+21​sin(6x)>0
Move 41​to the right side
−41​+21​sin(6x)>0
Add 41​ to both sides−41​+21​sin(6x)+41​>0+41​
Simplify21​sin(6x)>41​
21​sin(6x)>41​
Multiply both sides by 2
21​sin(6x)>41​
Multiply both sides by 22⋅21​sin(6x)>41⋅2​
Simplify
2⋅21​sin(6x)>41⋅2​
Simplify 2⋅21​sin(6x):sin(6x)
2⋅21​sin(6x)
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​sin(6x)
Cancel the common factor: 2=sin(6x)⋅1
Multiply: sin(6x)⋅1=sin(6x)=sin(6x)
Simplify 41⋅2​:21​
41⋅2​
Multiply the numbers: 1⋅2=2=42​
Cancel the common factor: 2=21​
sin(6x)>21​
sin(6x)>21​
sin(6x)>21​
For sin(x)>a, if −1≤a<1 then arcsin(a)+2πn<x<π−arcsin(a)+2πnarcsin(21​)+2πn<6x<π−arcsin(21​)+2πn
If a<u<bthen a<uandu<barcsin(21​)+2πn<6xand6x<π−arcsin(21​)+2πn
arcsin(21​)+2πn<6x:x>36π​+3πn​
arcsin(21​)+2πn<6x
Switch sides6x>arcsin(21​)+2πn
Simplify arcsin(21​)+2πn:6π​+2πn
arcsin(21​)+2πn
Use the following trivial identity:arcsin(21​)=6π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=6π​+2πn
6x>6π​+2πn
Divide both sides by 6
6x>6π​+2πn
Divide both sides by 666x​>66π​​+62πn​
Simplify
66x​>66π​​+62πn​
Simplify 66x​:x
66x​
Divide the numbers: 66​=1=x
Simplify 66π​​+62πn​:36π​+3πn​
66π​​+62πn​
66π​​=36π​
66π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅6π​
Multiply the numbers: 6⋅6=36=36π​
62πn​=3πn​
62πn​
Cancel the common factor: 2=3πn​
=36π​+3πn​
x>36π​+3πn​
x>36π​+3πn​
x>36π​+3πn​
6x<π−arcsin(21​)+2πn:x<365π​+3π​n
6x<π−arcsin(21​)+2πn
Simplify π−arcsin(21​)+2πn:π−6π​+2πn
π−arcsin(21​)+2πn
Use the following trivial identity:arcsin(21​)=6π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=π−6π​+2πn
6x<π−6π​+2πn
Divide both sides by 6
6x<π−6π​+2πn
Divide both sides by 666x​<6π​−66π​​+62πn​
Simplify
66x​<6π​−66π​​+62πn​
Simplify 66x​:x
66x​
Divide the numbers: 66​=1=x
Simplify 6π​−66π​​+62πn​:6π​−36π​+3πn​
6π​−66π​​+62πn​
66π​​=36π​
66π​​
Apply the fraction rule: acb​​=c⋅ab​=6⋅6π​
Multiply the numbers: 6⋅6=36=36π​
62πn​=3πn​
62πn​
Cancel the common factor: 2=3πn​
=6π​−36π​+3πn​
x<6π​−36π​+3πn​
x<6π​−36π​+3πn​
Simplify 6π​−36π​:365π​
6π​−36π​
Least Common Multiplier of 6,36:36
6,36
Least Common Multiplier (LCM)
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Prime factorization of 36:2⋅2⋅3⋅3
36
36divides by 236=18⋅2=2⋅18
18divides by 218=9⋅2=2⋅2⋅9
9divides by 39=3⋅3=2⋅2⋅3⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅2⋅3⋅3
Multiply each factor the greatest number of times it occurs in either 6 or 36=2⋅2⋅3⋅3
Multiply the numbers: 2⋅2⋅3⋅3=36=36
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 36
For 6π​:multiply the denominator and numerator by 66π​=6⋅6π6​=36π6​
=36π6​−36π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=36π6−π​
Add similar elements: 6π−π=5π=365π​
x<365π​+3π​n
x<365π​+3π​n
Combine the intervalsx>36π​+3πn​andx<365π​+3π​n
Merge Overlapping Intervals36π​+3π​n<x<365π​+3π​n

Popular Examples

cos(-θ)<01+cos(x)>0cos(2x)<-(sqrt(2))/2 ,0<= x<= 2picos^2(x)-sin^2(x)-cos(x)<= 0sin(x/6)>=-(sqrt(2))/2
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024