Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

3sin((pix)/(12)-pi/2)<=-2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

3sin(12πx​−2π​)≤−2

Solution

π−6π+12arcsin(32​)​+24n≤x≤π6π−12arcsin(32​)​+24n
+2
Interval Notation
[π−6π+12arcsin(32​)​+24n,π6π−12arcsin(32​)​+24n]
Decimal
−3.21264…+24n≤x≤3.21264…+24n
Solution steps
3sin(12πx​−2π​)≤−2
Divide both sides by 3
3sin(12πx​−2π​)≤−2
Divide both sides by 333sin(12πx​−2π​)​≤3−2​
Simplifysin(12πx​−2π​)≤−32​
sin(12πx​−2π​)≤−32​
For sin(x)≤a, if −1<a<1 then −π−arcsin(a)+2πn≤x≤arcsin(a)+2πn−π−arcsin(−32​)+2πn≤(12πx​−2π​)≤arcsin(−32​)+2πn
If a≤u≤bthen a≤uandu≤b−π−arcsin(−32​)+2πn≤12πx​−2π​and12πx​−2π​≤arcsin(−32​)+2πn
−π−arcsin(−32​)+2πn≤12πx​−2π​:x≥π−6π+12arcsin(32​)​+24n
−π−arcsin(−32​)+2πn≤12πx​−2π​
Switch sides12πx​−2π​≥−π−arcsin(−32​)+2πn
Simplify −π−arcsin(−32​)+2πn:−π+arcsin(32​)+2πn
−π−arcsin(−32​)+2πn
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−32​)=−arcsin(32​)=−π−(−arcsin(32​))+2πn
Apply rule −(−a)=a=−π+arcsin(32​)+2πn
12πx​−2π​≥−π+arcsin(32​)+2πn
Move 2π​to the right side
12πx​−2π​≥−π+arcsin(32​)+2πn
Add 2π​ to both sides12πx​−2π​+2π​≥−π+arcsin(32​)+2πn+2π​
Simplify12πx​≥−π+arcsin(32​)+2πn+2π​
12πx​≥−π+arcsin(32​)+2πn+2π​
Multiply both sides by 12
12πx​≥−π+arcsin(32​)+2πn+2π​
Multiply both sides by 121212πx​≥−12π+12arcsin(32​)+12⋅2πn+12⋅2π​
Simplify
1212πx​≥−12π+12arcsin(32​)+12⋅2πn+12⋅2π​
Simplify 1212πx​:πx
1212πx​
Divide the numbers: 1212​=1=πx
Simplify −12π+12arcsin(32​)+12⋅2πn+12⋅2π​:−6π+24πn+12arcsin(32​)
−12π+12arcsin(32​)+12⋅2πn+12⋅2π​
12⋅2πn=24πn
12⋅2πn
Multiply the numbers: 12⋅2=24=24πn
12⋅2π​=6π
12⋅2π​
Multiply fractions: a⋅cb​=ca⋅b​=2π12​
Divide the numbers: 212​=6=6π
=−12π+12arcsin(32​)+24πn+6π
Group like terms=−12π+6π+24πn+12arcsin(32​)
Add similar elements: −12π+6π=−6π=−6π+24πn+12arcsin(32​)
πx≥−6π+24πn+12arcsin(32​)
πx≥−6π+24πn+12arcsin(32​)
πx≥−6π+24πn+12arcsin(32​)
Divide both sides by π
πx≥−6π+24πn+12arcsin(32​)
Divide both sides by πππx​≥−π6π​+π24πn​+π12arcsin(32​)​
Simplify
ππx​≥−π6π​+π24πn​+π12arcsin(32​)​
Simplify ππx​:x
ππx​
Cancel the common factor: π=x
Simplify −π6π​+π24πn​+π12arcsin(32​)​:−6+24n+π12arcsin(32​)​
−π6π​+π24πn​+π12arcsin(32​)​
Cancel π6π​:6
π6π​
Cancel the common factor: π=6
=−6+π24πn​+π12arcsin(32​)​
Cancel π24πn​:24n
π24πn​
Cancel the common factor: π=24n
=−6+24n+π12arcsin(32​)​
x≥−6+24n+π12arcsin(32​)​
x≥−6+24n+π12arcsin(32​)​
Simplify −6+π12arcsin(32​)​:π−6π+12arcsin(32​)​
−6+π12arcsin(32​)​
Convert element to fraction: 6=π6π​=−π6π​+π12arcsin(32​)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=π−6π+12arcsin(32​)​
x≥π−6π+12arcsin(32​)​+24n
x≥π−6π+12arcsin(32​)​+24n
12πx​−2π​≤arcsin(−32​)+2πn:x≤π6π−12arcsin(32​)​+24n
12πx​−2π​≤arcsin(−32​)+2πn
Simplify arcsin(−32​)+2πn:−arcsin(32​)+2πn
arcsin(−32​)+2πn
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−32​)=−arcsin(32​)=−arcsin(32​)+2πn
12πx​−2π​≤−arcsin(32​)+2πn
Move 2π​to the right side
12πx​−2π​≤−arcsin(32​)+2πn
Add 2π​ to both sides12πx​−2π​+2π​≤−arcsin(32​)+2πn+2π​
Simplify12πx​≤−arcsin(32​)+2πn+2π​
12πx​≤−arcsin(32​)+2πn+2π​
Multiply both sides by 12
12πx​≤−arcsin(32​)+2πn+2π​
Multiply both sides by 121212πx​≤−12arcsin(32​)+12⋅2πn+12⋅2π​
Simplify
1212πx​≤−12arcsin(32​)+12⋅2πn+12⋅2π​
Simplify 1212πx​:πx
1212πx​
Divide the numbers: 1212​=1=πx
Simplify −12arcsin(32​)+12⋅2πn+12⋅2π​:−12arcsin(32​)+24πn+6π
−12arcsin(32​)+12⋅2πn+12⋅2π​
12⋅2πn=24πn
12⋅2πn
Multiply the numbers: 12⋅2=24=24πn
12⋅2π​=6π
12⋅2π​
Multiply fractions: a⋅cb​=ca⋅b​=2π12​
Divide the numbers: 212​=6=6π
=−12arcsin(32​)+24πn+6π
πx≤−12arcsin(32​)+24πn+6π
πx≤−12arcsin(32​)+24πn+6π
πx≤−12arcsin(32​)+24πn+6π
Divide both sides by π
πx≤−12arcsin(32​)+24πn+6π
Divide both sides by πππx​≤−π12arcsin(32​)​+π24πn​+π6π​
Simplify
ππx​≤−π12arcsin(32​)​+π24πn​+π6π​
Simplify ππx​:x
ππx​
Cancel the common factor: π=x
Simplify −π12arcsin(32​)​+π24πn​+π6π​:6+24n−π12arcsin(32​)​
−π12arcsin(32​)​+π24πn​+π6π​
Group like terms=π6π​+π24πn​−π12arcsin(32​)​
Cancel π6π​:6
π6π​
Cancel the common factor: π=6
=6+π24πn​−π12arcsin(32​)​
Cancel π24πn​:24n
π24πn​
Cancel the common factor: π=24n
=6+24n−π12arcsin(32​)​
x≤6+24n−π12arcsin(32​)​
x≤6+24n−π12arcsin(32​)​
Simplify 6−π12arcsin(32​)​:π6π−12arcsin(32​)​
6−π12arcsin(32​)​
Convert element to fraction: 6=π6π​=π6π​−π12arcsin(32​)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=π6π−12arcsin(32​)​
x≤π6π−12arcsin(32​)​+24n
x≤π6π−12arcsin(32​)​+24n
Combine the intervalsx≥π−6π+12arcsin(32​)​+24nandx≤π6π−12arcsin(32​)​+24n
Merge Overlapping Intervalsπ−6π+12arcsin(32​)​+24n≤x≤π6π−12arcsin(32​)​+24n

Popular Examples

-sin(x)(2+sin(x))-cos^2(x)>01/(sqrt(3))<tan(x)6cos(θ)>= 0arctan(x^4)>0.0001cos(2x)>0,sin(x)>0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024