Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(2x)>sin^2(x)-2

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(2x)>sin2(x)−2

Solution

πn≤x<0.61547…+πnor−0.61547…+π+πn<x≤π+πn
+2
Interval Notation
[πn,0.61547…+πn)∪(−0.61547…+π+πn,π+πn]
Decimal
πn≤x<0.61547…+πnor2.52611…+πn<x≤3.14159…+πn
Solution steps
cos(2x)>sin2(x)−2
Move sin2(x)to the left side
cos(2x)>sin2(x)−2
Subtract sin2(x) from both sidescos(2x)−sin2(x)>sin2(x)−2−sin2(x)
cos(2x)−sin2(x)>−2
cos(2x)−sin2(x)>−2
Use the following identity: cos(2x)=cos2(x)−sin2(x)cos2(x)−sin2(x)−sin2(x)>−2
Simplifycos2(x)−2sin2(x)>−2
Periodicity of cos2(x)−2sin2(x):π
The compound periodicity of the sum of periodic functions is the least common multiplier of the periodscos2(x),2sin2(x)
Periodicity of cos2(x):π
Periodicity of cosn(x)=2Periodicityofcos(x)​,if n is even
Periodicity of cos(x):2π
Periodicity of cos(x)is 2π=2π
22π​
Simplifyπ
Periodicity of 2sin2(x):π
Periodicity of sinn(x)=2Periodicityofsin(x)​,if n is even
Periodicity of sin(x):2π
Periodicity of sin(x)is 2π=2π
22π​
Simplifyπ
Combine periods: π,π
=π
Factor cos2(x)−2sin2(x):(cos(x)+2​sin(x))(cos(x)−2​sin(x))
cos2(x)−2sin2(x)
Rewrite cos2(x)−2sin2(x) as cos2(x)−(2​sin(x))2
cos2(x)−2sin2(x)
Apply radical rule: a=(a​)22=(2​)2=cos2(x)−(2​)2sin2(x)
Apply exponent rule: ambm=(ab)m(2​)2sin2(x)=(2​sin(x))2=cos2(x)−(2​sin(x))2
=cos2(x)−(2​sin(x))2
Apply Difference of Two Squares Formula: x2−y2=(x+y)(x−y)cos2(x)−(2​sin(x))2=(cos(x)+2​sin(x))(cos(x)−2​sin(x))=(cos(x)+2​sin(x))(cos(x)−2​sin(x))
(cos(x)+2​sin(x))(cos(x)−2​sin(x))>−2
To find the zeroes, set the inequality to zero(cos(x)+2​sin(x))(cos(x)−2​sin(x))=0
Solve (cos(x)+2​sin(x))(cos(x)−2​sin(x))=0for 0≤x<π
(cos(x)+2​sin(x))(cos(x)−2​sin(x))=0
Solving each part separately
cos(x)+2​sin(x)=0:x=−0.61547…+π
cos(x)+2​sin(x)=0,0≤x<π
Rewrite using trig identities
cos(x)+2​sin(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)cos(x)+2​sin(x)​=cos(x)0​
Simplify1+cos(x)2​sin(x)​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)1+2​tan(x)=0
1+2​tan(x)=0
Move 1to the right side
1+2​tan(x)=0
Subtract 1 from both sides1+2​tan(x)−1=0−1
Simplify2​tan(x)=−1
2​tan(x)=−1
Divide both sides by 2​
2​tan(x)=−1
Divide both sides by 2​2​2​tan(x)​=2​−1​
Simplify
2​2​tan(x)​=2​−1​
Simplify 2​2​tan(x)​:tan(x)
2​2​tan(x)​
Cancel the common factor: 2​=tan(x)
Simplify 2​−1​:−22​​
2​−1​
Apply the fraction rule: b−a​=−ba​=−2​1​
Rationalize −2​1​:−22​​
−2​1​
Multiply by the conjugate 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−22​​
=−22​​
tan(x)=−22​​
tan(x)=−22​​
tan(x)=−22​​
Apply trig inverse properties
tan(x)=−22​​
General solutions for tan(x)=−22​​tan(x)=−a⇒x=arctan(−a)+πnx=arctan(−22​​)+πn
x=arctan(−22​​)+πn
Solutions for the range 0≤x<πx=−arctan(22​​)+π
Show solutions in decimal formx=−0.61547…+π
cos(x)−2​sin(x)=0:x=0.61547…
cos(x)−2​sin(x)=0,0≤x<π
Rewrite using trig identities
cos(x)−2​sin(x)=0
Divide both sides by cos(x),cos(x)=0cos(x)cos(x)−2​sin(x)​=cos(x)0​
Simplify1−cos(x)2​sin(x)​=0
Use the basic trigonometric identity: cos(x)sin(x)​=tan(x)1−2​tan(x)=0
1−2​tan(x)=0
Move 1to the right side
1−2​tan(x)=0
Subtract 1 from both sides1−2​tan(x)−1=0−1
Simplify−2​tan(x)=−1
−2​tan(x)=−1
Divide both sides by −2​
−2​tan(x)=−1
Divide both sides by −2​−2​−2​tan(x)​=−2​−1​
Simplify
−2​−2​tan(x)​=−2​−1​
Simplify −2​−2​tan(x)​:tan(x)
−2​−2​tan(x)​
Apply the fraction rule: −b−a​=ba​=2​2​tan(x)​
Cancel the common factor: 2​=tan(x)
Simplify −2​−1​:22​​
−2​−1​
Apply the fraction rule: −b−a​=ba​=2​1​
Rationalize 2​1​:22​​
2​1​
Multiply by the conjugate 2​2​​=2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=22​​
=22​​
tan(x)=22​​
tan(x)=22​​
tan(x)=22​​
Apply trig inverse properties
tan(x)=22​​
General solutions for tan(x)=22​​tan(x)=a⇒x=arctan(a)+πnx=arctan(22​​)+πn
x=arctan(22​​)+πn
Solutions for the range 0≤x<πx=arctan(22​​)
Show solutions in decimal formx=0.61547…
Combine all the solutions0.61547…or−0.61547…+π
The intervals between the zeros0<x<0.61547…,0.61547…<x<−0.61547…+π,−0.61547…+π<x<π
Summarize in a table:cos(x)+2​sin(x)cos(x)−2​sin(x)(cos(x)+2​sin(x))(cos(x)−2​sin(x))​x=0+++​0<x<0.61547…+++​x=0.61547…+00​0.61547…<x<−0.61547…+π+−−​x=−0.61547…+π0−0​−0.61547…+π<x<π−−+​x=π−−+​​
Identify the intervals that satisfy the required condition: >0x=0or0<x<0.61547…or−0.61547…+π<x<πorx=π
Merge Overlapping Intervals
0≤x<0.61547…or−0.61547…+π<x<πorx=π
The union of two intervals is the set of numbers which are in either interval
x=0or0<x<0.61547…
0≤x<0.61547…
The union of two intervals is the set of numbers which are in either interval
0≤x<0.61547…or−0.61547…+π<x<π
0≤x<0.61547…or−0.61547…+π<x<π
The union of two intervals is the set of numbers which are in either interval
0≤x<0.61547…or−0.61547…+π<x<πorx=π
0≤x<0.61547…or−0.61547…+π<x≤π
0≤x<0.61547…or−0.61547…+π<x≤π
Apply the periodicity of cos2(x)−2sin2(x)πn≤x<0.61547…+πnor−0.61547…+π+πn<x≤π+πn

Popular Examples

cos(x/2)+1/2 >0cos^2(θ)>= 1/2sin(x)cos(x)<= 1cos(θ)>0,cot(θ)<0(cot(x))^2<1,0<= x<= 2pi
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024