Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

1/3 cos(3x-pi/3)< 1/6

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

31​cos(3x−3π​)<61​

Solution

92π​+32π​n<x<32π​+32π​n
+2
Interval Notation
(92π​+32π​n,32π​+32π​n)
Decimal
0.69813…+32π​n<x<2.09439…+32π​n
Solution steps
31​cos(3x−3π​)<61​
Multiply both sides by 3
31​cos(3x−3π​)<61​
Multiply both sides by 33⋅31​cos(3x−3π​)<61⋅3​
Simplify
3⋅31​cos(3x−3π​)<61⋅3​
Simplify 3⋅31​cos(3x−3π​):cos(3x−3π​)
3⋅31​cos(3x−3π​)
Multiply fractions: a⋅cb​=ca⋅b​=31⋅3​cos(3x−3π​)
Cancel the common factor: 3=cos(3x−3π​)⋅1
Multiply: cos(3x−3π​)⋅1=cos(3x−3π​)=cos(3x−3π​)
Simplify 61⋅3​:21​
61⋅3​
Multiply the numbers: 1⋅3=3=63​
Cancel the common factor: 3=21​
cos(3x−3π​)<21​
cos(3x−3π​)<21​
cos(3x−3π​)<21​
For cos(x)<a, if −1<a≤1 then arccos(a)+2πn<x<2π−arccos(a)+2πnarccos(21​)+2πn<(3x−3π​)<2π−arccos(21​)+2πn
If a<u<bthen a<uandu<barccos(21​)+2πn<3x−3π​and3x−3π​<2π−arccos(21​)+2πn
arccos(21​)+2πn<3x−3π​:x>92π​+32πn​
arccos(21​)+2πn<3x−3π​
Switch sides3x−3π​>arccos(21​)+2πn
Simplify arccos(21​)+2πn:3π​+2πn
arccos(21​)+2πn
Use the following trivial identity:arccos(21​)=3π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=3π​+2πn
3x−3π​>3π​+2πn
Move 3π​to the right side
3x−3π​>3π​+2πn
Add 3π​ to both sides3x−3π​+3π​>3π​+2πn+3π​
Simplify
3x−3π​+3π​>3π​+2πn+3π​
Simplify 3x−3π​+3π​:3x
3x−3π​+3π​
Add similar elements: −3π​+3π​>0
=3x
Simplify 3π​+2πn+3π​:32π​+2πn
3π​+2πn+3π​
Group like terms=3π​+3π​+2πn
Combine the fractions 3π​+3π​:32π​
Apply rule ca​±cb​=ca±b​=3π+π​
Add similar elements: π+π=2π=32π​
=32π​+2πn
3x>32π​+2πn
3x>32π​+2πn
3x>32π​+2πn
Divide both sides by 3
3x>32π​+2πn
Divide both sides by 333x​>332π​​+32πn​
Simplify
33x​>332π​​+32πn​
Simplify 33x​:x
33x​
Divide the numbers: 33​=1=x
Simplify 332π​​+32πn​:92π​+32πn​
332π​​+32πn​
332π​​=92π​
332π​​
Apply the fraction rule: acb​​=c⋅ab​=3⋅32π​
Multiply the numbers: 3⋅3=9=92π​
=92π​+32πn​
x>92π​+32πn​
x>92π​+32πn​
x>92π​+32πn​
3x−3π​<2π−arccos(21​)+2πn:x<32π​+32πn​
3x−3π​<2π−arccos(21​)+2πn
Simplify 2π−arccos(21​)+2πn:2π−3π​+2πn
2π−arccos(21​)+2πn
Use the following trivial identity:arccos(21​)=3π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=2π−3π​+2πn
3x−3π​<2π−3π​+2πn
Move 3π​to the right side
3x−3π​<2π−3π​+2πn
Add 3π​ to both sides3x−3π​+3π​<2π−3π​+2πn+3π​
Simplify
3x−3π​+3π​<2π−3π​+2πn+3π​
Simplify 3x−3π​+3π​:3x
3x−3π​+3π​
Add similar elements: −3π​+3π​<0
=3x
Simplify 2π−3π​+2πn+3π​:2π+2πn
2π−3π​+2πn+3π​
Group like terms=−3π​+3π​+2π+2πn
Add similar elements: −3π​+3π​=0=2π+2πn
3x<2π+2πn
3x<2π+2πn
3x<2π+2πn
Divide both sides by 3
3x<2π+2πn
Divide both sides by 333x​<32π​+32πn​
Simplifyx<32π​+32πn​
x<32π​+32πn​
Combine the intervalsx>92π​+32πn​andx<32π​+32πn​
Merge Overlapping Intervals92π​+32π​n<x<32π​+32π​n

Popular Examples

-cos(3x)<02cos(t)-cos(2t)>0cos(x)<sqrt(3)sin(x)sin(x)+1/2 >0tan(x)<=-3
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024