Solución
Solución
+2
Notación de intervalos
Decimal
Pasos de solución
Usar la siguiente identidad: Por lo tanto
Simplificar
Expandir
Expandir
Poner los parentesis utilizando:
Multiplicar los numeros:
Simplificar
Agrupar términos semejantes
Sumar/restar lo siguiente:
Sea:
Factorizar
Factorizar
Factorizar el termino común
Factorizar
Reescribir como
Aplicar las leyes de los exponentes:
Reescribir como
Aplicar las leyes de los exponentes:
Aplicar la siguiente regla para binomios al cuadrado:
Multiplicar ambos lados por (invertir la desigualdad)
Simplificar
Identificar los intervalos
Encontrar los signos de los factores de
Encontrar los signos de
Desplace a la derecha
Restar de ambos lados
Simplificar
Dividir ambos lados entre
Dividir ambos lados entre
Simplificar
Simplificar
Eliminar los terminos comunes:
Simplificar
Aplicar las propiedades de las fracciones:
Racionalizar
Multiplicar por el conjugado
Aplicar las leyes de los exponentes:
Desplace a la derecha
Restar de ambos lados
Simplificar
Dividir ambos lados entre
Dividir ambos lados entre
Simplificar
Simplificar
Eliminar los terminos comunes:
Simplificar
Aplicar las propiedades de las fracciones:
Racionalizar
Multiplicar por el conjugado
Aplicar las leyes de los exponentes:
Desplace a la derecha
Restar de ambos lados
Simplificar
Dividir ambos lados entre
Dividir ambos lados entre
Simplificar
Simplificar
Eliminar los terminos comunes:
Simplificar
Aplicar las propiedades de las fracciones:
Racionalizar
Multiplicar por el conjugado
Aplicar las leyes de los exponentes:
Encontrar los signos de
Desplace a la derecha
Sumar a ambos lados
Simplificar
Dividir ambos lados entre
Dividir ambos lados entre
Simplificar
Simplificar
Eliminar los terminos comunes:
Simplificar
Multiplicar por el conjugado
Aplicar las leyes de los exponentes:
Desplace a la derecha
Sumar a ambos lados
Simplificar
Dividir ambos lados entre
Dividir ambos lados entre
Simplificar
Simplificar
Eliminar los terminos comunes:
Simplificar
Multiplicar por el conjugado
Aplicar las leyes de los exponentes:
Desplace a la derecha
Sumar a ambos lados
Simplificar
Dividir ambos lados entre
Dividir ambos lados entre
Simplificar
Simplificar
Eliminar los terminos comunes:
Simplificar
Multiplicar por el conjugado
Aplicar las leyes de los exponentes:
Encontrar los signos de
Encontrar puntos de singularidad
Encontrar los ceros del denominador
Resumir en una tabla:
Identificar los intervalos que cumplen la condición:
Mezclar intervalos sobrepuestos
La unión de dos intervalos comprende a los conjuntos numéricos que están en el primero y en el segundo
or
La unión de dos intervalos comprende a los conjuntos numéricos que están en el primero y en el segundo
or
La unión de dos intervalos comprende a los conjuntos numéricos que están en el primero y en el segundo
or
Sustituir en la ecuación
Pi entonces
Intercambiar lados
Para , si entonces
Simplificar
Utilizar la siguiente identidad trivial:
Simplificar
Utilizar la siguiente identidad trivial:
Para , si entonces
Simplificar
Utilizar la siguiente identidad trivial:
Simplificar
Utilizar la siguiente identidad trivial:
Simplificar
Convertir a fracción:
Ya que los denominadores son iguales, combinar las fracciones:
Multiplicar los numeros:
Sumar elementos similares:
Combinar los rangos
Mezclar intervalos sobrepuestos
Para , si entonces
Simplificar
Utilizar la siguiente identidad trivial:
Simplificar
Utilizar la siguiente identidad trivial:
Combinar los rangos
Mezclar intervalos sobrepuestos