Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

cos(-390)

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

cos(−390∘)

Lösung

23​​
+1
Dezimale
0.86602…
Schritte zur Lösung
cos(−390∘)
Verwende die folgende Eigenschaft: cos(−x)=cos(x)cos(−390∘)=cos(390∘)=cos(390∘)
cos(390∘)=cos(30∘)
cos(390∘)
Schreibe 390∘um: 360∘+30∘=cos(360∘+30∘)
Verwende die Periodizität von cos: cos(x+360∘)=cos(x)cos(360∘+30∘)=cos(30∘)=cos(30∘)
=cos(30∘)
Verwende die folgende triviale Identität:cos(30∘)=23​​
cos(30∘)
cos(x) Periodizitätstabelle mit 360∘n Zyklus:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=23​​
=23​​

Beliebte Beispiele

15sin(60)15sin(60∘)arctan(0.04)arctan(0.04)40sin(30)40sin(30∘)cos((7pi)/(12))cos((5pi)/(12))+sin((7pi)/(12))sin((5pi)/(12))cos(127π​)cos(125π​)+sin(127π​)sin(125π​)cot((-pi)/4)cot(4−π​)
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024