Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

cos^3(pi/6)

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

cos3(6π​)

Lösung

833​​
+1
Dezimale
0.64951…
Schritte zur Lösung
cos3(6π​)
Verwende die folgende triviale Identität:cos(6π​)=23​​
cos(6π​)
cos(x) Periodizitätstabelle mit 2πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=23​​
=(23​​)3
Vereinfache (23​​)3:833​​
(23​​)3
Wende Exponentenregel an: (ba​)c=bcac​=23(3​)3​
(3​)3:323​
Wende Radikal Regel an: a​=a21​=(321​)3
Wende Exponentenregel an: (ab)c=abc=321​⋅3
21​⋅3=23​
21​⋅3
Multipliziere Brüche: a⋅cb​=ca⋅b​=21⋅3​
Multipliziere die Zahlen: 1⋅3=3=23​
=323​
=23323​​
323​=33​
323​
323​=31+21​=31+21​
Wende Exponentenregel an: xa+b=xaxb=31⋅321​
Fasse zusammen=33​
=2333​​
23=8=833​​
=833​​

Beliebte Beispiele

-cos(180)−cos(180∘)arcsin(sin(-pi/4))arcsin(sin(−4π​))arcsin(6)arcsin(6)cos^3(pi/3)cos3(3π​)cos(5/6)cos(65​)
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024