Solutions
Calculateur d'intégraleCalculateur d'une dérivéeCalculateur d'algèbreCalculateur d'une matricePlus...
Graphisme
Graphique linéaireGraphique exponentielGraphique quadratiqueGraphique de péchéPlus...
Calculateurs
Calculateur d'IMCCalculateur d'intérêts composésCalculateur de pourcentageCalculateur d'accélérationPlus...
Géométrie
Calculateur du théorème de PythagoreCalculateur de l'aire d'un cercleCalculatrice de triangle isocèleCalculateur de trianglesPlus...
Outils
Bloc-noteGroupesAides-mémoireDes feuilles de calculExercicesVérifier
fr
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Populaire Trigonométrie >

sinh(2+i)

  • Pré-algèbre
  • Algèbre
  • Pré calculs
  • Calculs
  • Fonctions
  • Algèbre linéaire
  • Trigonométrie
  • Statistiques
  • Chimie
  • Economie
  • Conversions

Solution

sinh(2+i)

Solution

2e2−cos(1)+e4cos(1)​+i2e2sin(1)+e4sin(1)​
étapes des solutions
sinh(2+i)
Use the Hyperbolic identity: sinh(x)=2ex−e−x​=2e2+i−e−(2+i)​
Simplifier 2e2+i−e−(2+i)​:2e2−cos(−1)+e4cos(1)​+i2e2−sin(−1)+e4sin(1)​
2e2+i−e−(2+i)​
e2+i−e−(2+i)=e2(cos(1)+isin(1))−e−2(cos(−1)+isin(−1))
e2+i−e−(2+i)
Appliquer la règle du nombre imaginaire: ea+ib=ea(cos(b)+isin(b))=e2(cos(1)+isin(1))−e−(2+i)
Appliquer la règle du nombre imaginaire: ea+ib=ea(cos(b)+isin(b))=e2(cos(1)+isin(1))−e−2(cos(−1)+isin(−1))
=2e2(cos(1)+isin(1))−e−2(cos(−1)+isin(−1))​
e−2(cos(−1)+sin(−1)i)=e2cos(−1)+isin(−1)​
e−2(cos(−1)+sin(−1)i)
Appliquer la règle de l'exposant: a−b=ab1​e−2=e21​=e21​(cos(−1)+isin(−1))
Multiplier des fractions: a⋅cb​=ca⋅b​=e21⋅(cos(−1)+sin(−1)i)​
1⋅(cos(−1)+sin(−1)i)=cos(−1)+isin(−1)
1⋅(cos(−1)+sin(−1)i)
Multiplier: 1⋅(cos(−1)+sin(−1)i)=(cos(−1)+sin(−1)i)=(cos(−1)+isin(−1))
Retirer les parenthèses: (a)=a=cos(−1)+sin(−1)i
=e2cos(−1)+isin(−1)​
=2e2(cos(1)+isin(1))−e2cos(−1)+isin(−1)​​
Relier e2(cos(1)+sin(1)i)−e2cos(−1)+sin(−1)i​:e2e4cos(1)+e4isin(1)−cos(−1)−isin(−1)​
e2(cos(1)+sin(1)i)−e2cos(−1)+sin(−1)i​
Convertir un élément en fraction: e2(cos(1)+isin(1))=e2e2(cos(1)+sin(1)i)e2​=e2e2(cos(1)+sin(1)i)e2​−e2cos(−1)+sin(−1)i​
Puisque les dénominateurs sont égaux, combiner les fractions: ca​±cb​=ca±b​=e2e2(cos(1)+sin(1)i)e2−(cos(−1)+sin(−1)i)​
e2(cos(1)+sin(1)i)e2−(cos(−1)+sin(−1)i)=e4(cos(1)+isin(1))−(cos(−1)+isin(−1))
e2(cos(1)+sin(1)i)e2−(cos(−1)+sin(−1)i)
e2(cos(1)+sin(1)i)e2=e4(cos(1)+isin(1))
e2(cos(1)+sin(1)i)e2
Appliquer la règle de l'exposant: ab⋅ac=ab+ce2e2=e2+2=(cos(1)+sin(1)i)e2+2
Additionner les nombres : 2+2=4=(cos(1)+sin(1)i)e4
=e4(cos(1)+isin(1))−(cos(−1)+isin(−1))
=e2e4(cos(1)+isin(1))−(cos(−1)+isin(−1))​
Développer (cos(1)+sin(1)i)e4−(cos(−1)+sin(−1)i):e4cos(1)+e4isin(1)−cos(−1)−sin(−1)i
(cos(1)+sin(1)i)e4−(cos(−1)+sin(−1)i)
=e4(cos(1)+isin(1))−(cos(−1)+isin(−1))
Développer e4(cos(1)+sin(1)i):e4cos(1)+e4isin(1)
e4(cos(1)+sin(1)i)
Appliquer la loi de la distribution: a(b+c)=ab+aca=e4,b=cos(1),c=sin(1)i=e4cos(1)+e4sin(1)i
=e4cos(1)+e4isin(1)
=e4cos(1)+e4isin(1)−(cos(−1)+sin(−1)i)
−(cos(−1)+sin(−1)i):−cos(−1)−sin(−1)i
−(cos(−1)+sin(−1)i)
Distribuer des parenthèses=−(cos(−1))−(sin(−1)i)
Appliquer les règles des moins et des plus+(−a)=−a=−cos(−1)−sin(−1)i
=e4cos(1)+e4isin(1)−cos(−1)−sin(−1)i
=e2e4cos(1)+e4isin(1)−cos(−1)−isin(−1)​
=2e2e4cos(1)+e4isin(1)−cos(−1)−isin(−1)​​
Appliquer la règle des fractions: acb​​=c⋅ab​=e2⋅2e4cos(1)+e4isin(1)−cos(−1)−sin(−1)i​
Récrire e2⋅2e4cos(1)+e4isin(1)−cos(−1)−sin(−1)i​ sous la forme complexe standard : 2e2e4cos(1)−cos(−1)​+2e2e4sin(1)−sin(−1)​i
e2⋅2e4cos(1)+e4isin(1)−cos(−1)−sin(−1)i​
Appliquer la règle des fractions: ca±b​=ca​±cb​e2⋅2e4cos(1)+e4isin(1)−cos(−1)−sin(−1)i​=e2⋅2e4cos(1)​+e2⋅2e4isin(1)​−e2⋅2cos(−1)​−e2⋅2sin(−1)i​=2e2e4cos(1)​+2e2e4isin(1)​−2e2cos(−1)​−2e2isin(−1)​
Grouper comme termes=−2e2cos(−1)​−2e2isin(−1)​+2e2e4cos(1)​+2e2e4isin(1)​
Annuler 2e2e4cos(1)​:2e2cos(1)​
2e2e4cos(1)​
Annuler 2e2e4cos(1)​:2e2cos(1)​
2e2e4cos(1)​
Appliquer la règle de l'exposant: xbxa​=xa−be2e4​=e4−2=2e4−2cos(1)​
Soustraire les nombres : 4−2=2=2e2cos(1)​
=2e2cos(1)​
=−2e2cos(−1)​−2e2isin(−1)​+2e2cos(1)​+2e2e4isin(1)​
Annuler 2e2e4isin(1)​:2e2isin(1)​
2e2e4isin(1)​
Annuler 2e2e4isin(1)​:2e2isin(1)​
2e2e4isin(1)​
Appliquer la règle de l'exposant: xbxa​=xa−be2e4​=e4−2=2ie4−2sin(1)​
Soustraire les nombres : 4−2=2=2e2isin(1)​
=2e2isin(1)​
=−2e2cos(−1)​−2e2isin(−1)​+2e2cos(1)​+2e2isin(1)​
Grouper comme termes=2e2cos(1)​−2e2cos(−1)​+2e2isin(1)​−2e2isin(−1)​
Grouper la partie réelle et la partie imaginaire du nombre complexe=(2e2cos(1)​−2e2cos(−1)​)+(2e2sin(1)​−2e2sin(−1)​)i
2e2sin(1)​−2e2sin(−1)​=2e2e4sin(1)−sin(−1)​
2e2sin(1)​−2e2sin(−1)​
Plus petit commun multiple de 2,2e2:2e2
2,2e2
Plus petit commun multiple (PPCM)
Plus petit commun multiple de 2,2:2
2,2
Plus petit commun multiple (PPCM)
Factorisation première de 2:2
2
2 est un nombre premier, par conséquent aucune factorisation n'est possible=2
Factorisation première de 2:2
2
2 est un nombre premier, par conséquent aucune factorisation n'est possible=2
Multiplier chaque facteur qui apparait le plus grand nombre de fois dans 2 ou 2=2
Multiplier les nombres : 2=2=2
Calculer une expression composée de facteurs qui apparaissent soit dans 2 ou dans 2e2=2e2
Ajuster des fractions sur la base du PPCM
Multiplier chaque numérateur par le même montant nécessaire pour multiplier son
dénominateur correspondant pour le mettre au PPCM 2e2
Pour 2e2sin(1)​:multiplier le dénominateur et le numérateur par e22e2sin(1)​=2e2e2sin(1)e2​=2e2e4sin(1)​
=2e2e4sin(1)​−2e2sin(−1)​
Puisque les dénominateurs sont égaux, combiner les fractions: ca​±cb​=ca±b​=2e2e4sin(1)−sin(−1)​
=(2e2cos(1)​−2e2cos(−1)​)+2e2e4sin(1)−sin(−1)​i
2e2cos(1)​−2e2cos(−1)​=2e2e4cos(1)−cos(−1)​
2e2cos(1)​−2e2cos(−1)​
Plus petit commun multiple de 2,2e2:2e2
2,2e2
Plus petit commun multiple (PPCM)
Plus petit commun multiple de 2,2:2
2,2
Plus petit commun multiple (PPCM)
Factorisation première de 2:2
2
2 est un nombre premier, par conséquent aucune factorisation n'est possible=2
Factorisation première de 2:2
2
2 est un nombre premier, par conséquent aucune factorisation n'est possible=2
Multiplier chaque facteur qui apparait le plus grand nombre de fois dans 2 ou 2=2
Multiplier les nombres : 2=2=2
Calculer une expression composée de facteurs qui apparaissent soit dans 2 ou dans 2e2=2e2
Ajuster des fractions sur la base du PPCM
Multiplier chaque numérateur par le même montant nécessaire pour multiplier son
dénominateur correspondant pour le mettre au PPCM 2e2
Pour 2e2cos(1)​:multiplier le dénominateur et le numérateur par e22e2cos(1)​=2e2e2cos(1)e2​=2e2e4cos(1)​
=2e2e4cos(1)​−2e2cos(−1)​
Puisque les dénominateurs sont égaux, combiner les fractions: ca​±cb​=ca±b​=2e2e4cos(1)−cos(−1)​
=2e2e4cos(1)−cos(−1)​+2e2e4sin(1)−sin(−1)​i
=2e2e4cos(1)−cos(−1)​+2e2e4sin(1)−sin(−1)​i
=2e2−cos(−1)+e4cos(1)​+i2e2−sin(−1)+e4sin(1)​
Utiliser la propriété suivante : sin(−x)=−sin(x)sin(−1)=−sin(1)=2e2−cos(−1)+e4cos(1)​+i2e2−(−sin(1))+e4sin(1)​
Utiliser la propriété suivante : cos(−x)=cos(x)cos(−1)=cos(1)=2e2−cos(1)+e4cos(1)​+i2e2−(−sin(1))+e4sin(1)​
Simplifier=2e2−cos(1)+e4cos(1)​+i2e2sin(1)+e4sin(1)​

Exemples populaires

4cot(60)-2cos(45)+tan(180)sin(32pi)cos(82.4)tan((11pi)/8)arcsin(15/19)
Outils d'étudeSolveur mathématique IADes feuilles de calculExercicesAides-mémoireCalculateursCalculateur de graphesCalculateur de géométrieVérifier la solution
applicationsApplication Symbolab (Android)Calculateur de graphes (Android)Exercices (Android)Application Symbolab (iOS)Calculateur de graphes (iOS)Exercices (iOS)Extension ChromeSymbolab Math Solver API
EntrepriseÀ propos de SymbolabBlogAide
LégalVie privéeTermesPolitique en matière de cookiesParamètres des cookiesNe pas vendre ni partager mes informations personnellesDroits d'auteur, directives de la communauté, DSA et autres ressources juridiquesCentre juridique Learneo
Des médias sociaux
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024