Soluciones
Calculadora de integrales (antiderivadas)Calculadora de derivadasCalculadora de ÁlgebraCalculadora de matricesMás...
Gráficos
Gráfica de líneaGráfica exponencialGráfica cuadráticaGráfico de senoMás...
Calculadoras
Calculadora de IMCCalculadora de interés compuestoCalculadora de porcentajeCalculadora de aceleraciónMás...
Geometría
Calculadora del teorema de pitágorasCalculadora del área del círculoCalculadora de triángulo isóscelesCalculadora de TriángulosMás...
Herramientas
CuadernoGruposHojas de referenciaHojas de trabajoPracticaVerificar
es
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometría >

4cos(108)

  • Pre-Álgebra
  • Álgebra
  • Precálculo
  • Cálculo
  • Funciones
  • Álgebra Lineal
  • Trigonometría
  • Estadística
  • Química
  • Economía
  • Conversiones

Solución

4cos(108∘)

Solución

1−5​
+1
Decimal
−1.23606…
Pasos de solución
4cos(108∘)
Re-escribir usando identidades trigonométricas:cos(108∘)=4cos3(36∘)−3cos(36∘)
cos(108∘)
Escribir cos(108∘)como cos(3⋅36∘)=cos(3⋅36∘)
Usar la siguiente identidad:cos(3x)=4cos3(x)−3cos(x)
cos(3x)
Re-escribir usando identidades trigonométricas
cos(3x)
Reescribir como=cos(2x+x)
Utilizar la identidad de suma de ángulos: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(2x)cos(x)−sin(2x)sin(x)
Utilizar la identidad trigonométrica del ángulo doble: sin(2x)=2sin(x)cos(x)=cos(2x)cos(x)−2sin(x)cos(x)sin(x)
Simplificar cos(2x)cos(x)−2sin(x)cos(x)sin(x):cos(x)cos(2x)−2sin2(x)cos(x)
cos(2x)cos(x)−2sin(x)cos(x)sin(x)
2sin(x)cos(x)sin(x)=2sin2(x)cos(x)
2sin(x)cos(x)sin(x)
Aplicar las leyes de los exponentes: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=2cos(x)sin1+1(x)
Sumar: 1+1=2=2cos(x)sin2(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
=cos(x)cos(2x)−2sin2(x)cos(x)
Utilizar la identidad trigonométrica del ángulo doble: cos(2x)=2cos2(x)−1=(2cos2(x)−1)cos(x)−2sin2(x)cos(x)
Utilizar la identidad pitagórica: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=(2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x)
Expandir (2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x):4cos3(x)−3cos(x)
(2cos2(x)−1)cos(x)−2(1−cos2(x))cos(x)
=cos(x)(2cos2(x)−1)−2cos(x)(1−cos2(x))
Expandir cos(x)(2cos2(x)−1):2cos3(x)−cos(x)
cos(x)(2cos2(x)−1)
Poner los parentesis utilizando: a(b−c)=ab−aca=cos(x),b=2cos2(x),c=1=cos(x)2cos2(x)−cos(x)1
=2cos2(x)cos(x)−1cos(x)
Simplificar 2cos2(x)cos(x)−1⋅cos(x):2cos3(x)−cos(x)
2cos2(x)cos(x)−1cos(x)
2cos2(x)cos(x)=2cos3(x)
2cos2(x)cos(x)
Aplicar las leyes de los exponentes: ab⋅ac=ab+ccos2(x)cos(x)=cos2+1(x)=2cos2+1(x)
Sumar: 2+1=3=2cos3(x)
1⋅cos(x)=cos(x)
1cos(x)
Multiplicar: 1⋅cos(x)=cos(x)=cos(x)
=2cos3(x)−cos(x)
=2cos3(x)−cos(x)
=2cos3(x)−cos(x)−2(1−cos2(x))cos(x)
Expandir −2cos(x)(1−cos2(x)):−2cos(x)+2cos3(x)
−2cos(x)(1−cos2(x))
Poner los parentesis utilizando: a(b−c)=ab−aca=−2cos(x),b=1,c=cos2(x)=−2cos(x)1−(−2cos(x))cos2(x)
Aplicar las reglas de los signos−(−a)=a=−2⋅1cos(x)+2cos2(x)cos(x)
Simplificar −2⋅1⋅cos(x)+2cos2(x)cos(x):−2cos(x)+2cos3(x)
−2⋅1cos(x)+2cos2(x)cos(x)
2⋅1⋅cos(x)=2cos(x)
2⋅1cos(x)
Multiplicar los numeros: 2⋅1=2=2cos(x)
2cos2(x)cos(x)=2cos3(x)
2cos2(x)cos(x)
Aplicar las leyes de los exponentes: ab⋅ac=ab+ccos2(x)cos(x)=cos2+1(x)=2cos2+1(x)
Sumar: 2+1=3=2cos3(x)
=−2cos(x)+2cos3(x)
=−2cos(x)+2cos3(x)
=2cos3(x)−cos(x)−2cos(x)+2cos3(x)
Simplificar 2cos3(x)−cos(x)−2cos(x)+2cos3(x):4cos3(x)−3cos(x)
2cos3(x)−cos(x)−2cos(x)+2cos3(x)
Agrupar términos semejantes=2cos3(x)+2cos3(x)−cos(x)−2cos(x)
Sumar elementos similares: 2cos3(x)+2cos3(x)=4cos3(x)=4cos3(x)−cos(x)−2cos(x)
Sumar elementos similares: −cos(x)−2cos(x)=−3cos(x)=4cos3(x)−3cos(x)
=4cos3(x)−3cos(x)
=4cos3(x)−3cos(x)
=4cos3(36∘)−3cos(36∘)
=4(4cos3(36∘)−3cos(36∘))
Re-escribir usando identidades trigonométricas:cos(36∘)=45​+1​
cos(36∘)
Demostrar que: cos(36∘)−sin(18∘)=21​
Utilizar el siguiente producto para la identidad de suma de ángulos: 2sin(x)cos(y)=sin(x+y)−sin(x−y)2cos(36∘)sin(18∘)=sin(54∘)−sin(18∘)
Demostrar que: 2cos(36∘)sin(18∘)=21​
Utilizar la identidad trigonométrica del ángulo doble: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Dividir ambos lados entre sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Usar la siguiente identidad: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Dividir ambos lados entre cos(18∘)1=4sin(18∘)cos(36∘)
Dividir ambos lados entre 221​=2sin(18∘)cos(36∘)
Sustituir 21​=2sin(18∘)cos(36∘)21​=sin(54∘)−sin(18∘)
sin(54∘)=cos(90∘−54∘)21​=cos(90∘−54∘)−sin(18∘)
21​=cos(36∘)−sin(18∘)
Demostrar que: cos(36∘)+sin(18∘)=45​​
Utilizar la regla de factorización: a2−b2=(a+b)(a−b)a=cos(36∘)+sin(18∘)(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))((cos(36∘)+sin(18∘))−(cos(36∘)−sin(18∘)))
Simplificar(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=2(2cos(36∘)sin(18∘))
Demostrar que: 2cos(36∘)sin(18∘)=21​
Utilizar la identidad trigonométrica del ángulo doble: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
Dividir ambos lados entre sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
Usar la siguiente identidad: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
Dividir ambos lados entre cos(18∘)1=4sin(18∘)cos(36∘)
Dividir ambos lados entre 221​=2sin(18∘)cos(36∘)
Sustituir 2cos(36∘)sin(18∘)=21​(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=1
Sustituir cos(36∘)−sin(18∘)=21​(cos(36∘)+sin(18∘))2−(21​)2=1
Simplificar(cos(36∘)+sin(18∘))2−41​=1
Sumar 41​ a ambos lados(cos(36∘)+sin(18∘))2−41​+41​=1+41​
Simplificar(cos(36∘)+sin(18∘))2=45​
Obtener la raíz cuadrada de ambos ladoscos(36∘)+sin(18∘)=±45​​
cos(36∘)no puede ser negativasin(18∘)no puede ser negativacos(36∘)+sin(18∘)=45​​
Añadir las siguientes ecuacionescos(36∘)+sin(18∘)=25​​((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))=(25​​+21​)
Simplificarcos(36∘)=45​+1​
=45​+1​
=4​4(45​+1​)3−3⋅45​+1​​
Simplificar 4​4(45​+1​)3−3⋅45​+1​​:1−5​
4​4(45​+1​)3−3⋅45​+1​​
4(45​+1​)3=25​+2​
4(45​+1​)3
(45​+1​)3=235​+2​
(45​+1​)3
Aplicar las leyes de los exponentes: (ba​)c=bcac​=43(5​+1)3​
(5​+1)3=85​+16
(5​+1)3
Aplicar la fórmula del binomio al cubo: (a+b)3=a3+3a2b+3ab2+b3a=5​,b=1
=(5​)3+3(5​)2⋅1+35​⋅12+13
Simplificar (5​)3+3(5​)2⋅1+35​⋅12+13:85​+16
(5​)3+3(5​)2⋅1+35​⋅12+13
Aplicar la regla 1a=112=1,13=1=(5​)3+3⋅1⋅(5​)2+3⋅1⋅5​+1
(5​)3=55​
(5​)3
Aplicar las leyes de los exponentes: a​=a21​=(521​)3
Aplicar las leyes de los exponentes: (ab)c=abc=521​⋅3
21​⋅3=23​
21​⋅3
Multiplicar fracciones: a⋅cb​=ca⋅b​=21⋅3​
Multiplicar los numeros: 1⋅3=3=23​
=523​
523​=55​
523​
523​=51+21​=51+21​
Aplicar las leyes de los exponentes: xa+b=xaxb=51⋅521​
Simplificar=55​
=55​
3(5​)2⋅1=15
3(5​)2⋅1
(5​)2=5
(5​)2
Aplicar las leyes de los exponentes: a​=a21​=(521​)2
Aplicar las leyes de los exponentes: (ab)c=abc=521​⋅2
21​⋅2=1
21​⋅2
Multiplicar fracciones: a⋅cb​=ca⋅b​=21⋅2​
Eliminar los terminos comunes: 2=1
=5
=3⋅5⋅1
Multiplicar los numeros: 3⋅5⋅1=15=15
35​⋅1=35​
35​⋅1
Multiplicar los numeros: 3⋅1=3=35​
=55​+15+35​+1
Sumar elementos similares: 55​+35​=85​=85​+15+1
Sumar: 15+1=16=85​+16
=85​+16
=4385​+16​
Factorizar 85​+16:8(5​+2)
85​+16
Reescribir como=85​+8⋅2
Factorizar el termino común 8=8(5​+2)
=438(5​+2)​
Factorizar 8:23
Factorizar 8=23
Factorizar 43:26
Factorizar 4=22=(22)3
Simplificar (22)3:26
(22)3
Aplicar las leyes de los exponentes: (ab)c=abc=22⋅3
Multiplicar los numeros: 2⋅3=6=26
=26
=2623(2+5​)​
Cancelar 2623(5​+2)​:235​+2​
2623(5​+2)​
Aplicar las leyes de los exponentes: xbxa​=xb−a1​2623​=26−31​=26−35​+2​
Restar: 6−3=3=235​+2​
=235​+2​
=4⋅232+5​​
Multiplicar fracciones: a⋅cb​=ca⋅b​=23(5​+2)⋅4​
Factorizar 4:22
Factorizar 4=22
=2322(2+5​)​
Cancelar 23(5​+2)⋅22​:25​+2​
23(5​+2)⋅22​
Aplicar las leyes de los exponentes: xbxa​=xb−a1​2322​=23−21​=23−25​+2​
Restar: 3−2=1=25​+2​
=25​+2​
3⋅45​+1​=43(5​+1)​
3⋅45​+1​
Multiplicar fracciones: a⋅cb​=ca⋅b​=4(5​+1)⋅3​
=4(22+5​​−43(1+5​)​)
Simplificar 25​+2​−4(5​+1)⋅3​en una fracción:41−5​​
25​+2​−4(5​+1)⋅3​
Mínimo común múltiplo de 2,4:4
2,4
Mínimo común múltiplo (MCM)
Descomposición en factores primos de 2:2
2
2 es un número primo, por lo tanto, no es posible factorizar=2
Descomposición en factores primos de 4:2⋅2
4
4divida por 24=2⋅2=2⋅2
Multiplicar cada factor el mayor número de veces que ocurra en cualquier 2 o 4=2⋅2
Multiplicar los numeros: 2⋅2=4=4
Reescribir las fracciones basandose en el mínimo común denominador
Multiplicar cada numerador por la misma cantidad necesaria para multiplicar el denominador correspondiente y convertirlo en el mínimo común denominador
Para 25​+2​:multiplicar el denominador y el numerador por 225​+2​=2⋅2(5​+2)⋅2​=4(5​+2)⋅2​
=4(5​+2)⋅2​−4(5​+1)⋅3​
Ya que los denominadores son iguales, combinar las fracciones: ca​±cb​=ca±b​=4(5​+2)⋅2−(5​+1)⋅3​
Expandir (5​+2)⋅2−(5​+1)⋅3:1−5​
(5​+2)⋅2−(5​+1)⋅3
=2(5​+2)−3(5​+1)
Expandir 2(5​+2):25​+4
2(5​+2)
Poner los parentesis utilizando: a(b+c)=ab+aca=2,b=5​,c=2=25​+2⋅2
Multiplicar los numeros: 2⋅2=4=25​+4
=25​+4−(5​+1)⋅3
Expandir −3(5​+1):−35​−3
−3(5​+1)
Poner los parentesis utilizando: a(b+c)=ab+aca=−3,b=5​,c=1=−35​+(−3)⋅1
Aplicar las reglas de los signos+(−a)=−a=−35​−3⋅1
Multiplicar los numeros: 3⋅1=3=−35​−3
=25​+4−35​−3
Simplificar 25​+4−35​−3:1−5​
25​+4−35​−3
Sumar elementos similares: 25​−35​=−5​=−5​+4−3
Sumar/restar lo siguiente: 4−3=1=1−5​
=1−5​
=41−5​​
=4⋅41−5​​
Multiplicar fracciones: a⋅cb​=ca⋅b​=4(1−5​)⋅4​
Eliminar los terminos comunes: 4=1−5​
=1−5​

Ejemplos populares

cos(7.6)sin(70)*8100sin(37)arctan(tan(-(2pi)/(11)))arcsin((sin(60))/(300)240)
Herramientas de estudioSolucionador Matemático de IAProblemas popularesHojas de trabajoPracticaHojas de referenciaCalculadorasCalculadora gráficaCalculadora de GeometríaVerificar solución
AplicacionesAplicación Symbolab (Android)Calculadora gráfica (Android)Practica (Android)Aplicación Symbolab (iOS)Calculadora gráfica (iOS)Practica (iOS)Extensión de ChromeSymbolab Math Solver API
EmpresaAcerca de SymbolabBlogAyuda
LegalPrivacidadTérminosPolítica de cookiesConfiguración de CookiesNo vendas ni compartas mi información personalCopyright, Guías Comunitarias, DSA & otros recursos legalesCentro Legal de Learneo
Redes sociales
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024