Soluzioni
Calcolatore integraleCalcolatore di derivateCalcolatore di algebraCalcolatore della matriceDi più...
Grafico
Grafico lineareGrafico esponenzialeGrafico quadraticoGrafico del senoDi più...
Calcolatrici
Calcolatore dell'IMCCalcolatore dell'interesse compostoCalcolatore percentualeCalcolatore dell'accelerazioneDi più...
Geometria
Calcolatore del teorema di PitagoraCalcolatore dell'area del cerchioCalcolatore del triangolo isosceleCalcolatore dei triangoliDi più...
AI Chat
Utensili
NotebookGruppiTrucchettiFogli di lavoroPraticaVerifica
it
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popolare Trigonometria >

ln(tanh(3-4i))

  • Pre-algebra
  • Algebra
  • Pre-calcolo
  • Calcolo
  • Funzioni
  • Algebra lineare
  • Trigonometria
  • Statistica
  • Chimica
  • Economia
  • Conversioni

Soluzione

ln(tanh(3−4i))

Soluzione

ln(cos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)−cos2(4)−sin2(4)+e12cos2(4)+e12sin2(4)−4e6icos(4)sin(4)​)
Fasi della soluzione
ln(tanh(3−4i))
Riscrivere utilizzando identità trigonometriche:tanh(3−4i)=cos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)−cos2(4)−sin2(4)+e12cos2(4)+e12sin2(4)​−icos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)4e6cos(4)sin(4)​
tanh(3−4i)
Usa l'identità iperbolica: tanh(x)=ex+e−xex−e−x​=e3−4i+e−(3−4i)e3−4i−e−(3−4i)​
Semplifica e3−4i+e−(3−4i)e3−4i−e−(3−4i)​:cos2(4)+sin2(4)+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)−cos2(4)−sin2(4)+e12cos2(−4)+e12sin2(−4)​+icos2(4)+sin2(4)+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)−2e6sin(4)cos(−4)+2e6cos(4)sin(−4)​
e3−4i+e−(3−4i)e3−4i−e−(3−4i)​
e3−4i−e−(3−4i)=e3(cos(−4)+isin(−4))−e−3(cos(4)+isin(4))
e3−4i−e−(3−4i)
Applicare la regola del numero immaginario: ea+ib=ea(cos(b)+isin(b))=e3(cos(−4)+isin(−4))−e−(3−4i)
Applicare la regola del numero immaginario: ea+ib=ea(cos(b)+isin(b))=e3(cos(−4)+isin(−4))−e−3(cos(4)+isin(4))
=e3−4i+e−(3−4i)e3(cos(−4)+isin(−4))−e−3(cos(4)+isin(4))​
e3−4i+e−(3−4i)=e3(cos(−4)+isin(−4))+e−3(cos(4)+isin(4))
e3−4i+e−(3−4i)
Applicare la regola del numero immaginario: ea+ib=ea(cos(b)+isin(b))=e3(cos(−4)+isin(−4))+e−(3−4i)
Applicare la regola del numero immaginario: ea+ib=ea(cos(b)+isin(b))=e3(cos(−4)+isin(−4))+e−3(cos(4)+isin(4))
=e3(cos(−4)+isin(−4))+e−3(cos(4)+isin(4))e3(cos(−4)+isin(−4))−e−3(cos(4)+isin(4))​
Applicare la regola dell'aritmetica complessa: c+dia+bi​=(c−di)(c+di)(c−di)(a+bi)​=c2+d2(ac+bd)+(bc−ad)i​a=e3e6cos(−4)−cos(4)​,b=e3e6sin(−4)−sin(4)​,c=e3e6cos(−4)+cos(4)​,d=e3e6sin(−4)+sin(4)​=(e3e6cos(−4)+cos(4)​)2+(e3e6sin(−4)+sin(4)​)2(e3e6cos(−4)−cos(4)​⋅e3e6cos(−4)+cos(4)​+e3e6sin(−4)−sin(4)​⋅e3e6sin(−4)+sin(4)​)+(e3e6sin(−4)−sin(4)​⋅e3e6cos(−4)+cos(4)​−e3e6cos(−4)−cos(4)​⋅e3e6sin(−4)+sin(4)​)i​
Affinare=e6(e6cos(−4)+cos(4))2+(e6sin(−4)+sin(4))2​e6(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))​+e62e6cos(4)sin(−4)−2e6sin(4)cos(−4)​i​
Semplifica e6(e6cos(−4)+cos(4))2+(e6sin(−4)+sin(4))2​e6(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))​+e62e6cos(4)sin(−4)−2e6sin(4)cos(−4)​i​:(e6cos(−4)+cos(4))2+(e6sin(−4)+sin(4))2(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))+i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))​
e6(e6cos(−4)+cos(4))2+(e6sin(−4)+sin(4))2​e6(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))​+e62e6cos(4)sin(−4)−2e6sin(4)cos(−4)​i​
Applica la regola delle frazioni: cb​a​=ba⋅c​=(e6cos(−4)+cos(4))2+(e6sin(−4)+sin(4))2(e6(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))​+e62e6cos(4)sin(−4)−2e6sin(4)cos(−4)​i)e6​
Moltiplicare e62e6cos(4)sin(−4)−2e6sin(4)cos(−4)​i:e6i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))​
e62e6cos(4)sin(−4)−2e6sin(4)cos(−4)​i
Moltiplica le frazioni: a⋅cb​=ca⋅b​=e6(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))i​
=(e6cos(−4)+cos(4))2+(e6sin(−4)+sin(4))2e6(e6(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))​+e6i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))​)​
Combinare le frazioni e6(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))​+e6i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))​:e6(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))+i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))​
Applicare la regola ca​±cb​=ca±b​=e6(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))+i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))​
=(e6cos(−4)+cos(4))2+(e6sin(−4)+sin(4))2e6(e6i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))+(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))​)​
Rimuovi le parentesi: (a)=a=(e6cos(−4)+cos(4))2+(e6sin(−4)+sin(4))2e6(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))+(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))i​e6​
Moltiplicare e6(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))+(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))i​e6:(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))+i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))
e6(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))+(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))i​e6
Moltiplica le frazioni: a⋅cb​=ca⋅b​=e6((e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))+(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))i)e6​
Cancella il fattore comune: e6=(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))+(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))i
=(e6cos(−4)+cos(4))2+(e6sin(−4)+sin(4))2(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))+i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))​
=(e6cos(−4)+cos(4))2+(e6sin(−4)+sin(4))2(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))+i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))​
Riscrivi (e6cos(−4)+cos(4))2+(e6sin(−4)+sin(4))2(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))+i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))​ in forma complessa standard: e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)e12cos2(−4)−cos2(4)+e12sin2(−4)−sin2(4)​+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)2e6cos(4)sin(−4)−2e6sin(4)cos(−4)​i
(e6cos(−4)+cos(4))2+(e6sin(−4)+sin(4))2(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))+i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))​
Espandi (e6cos(−4)+cos(4))2+(e6sin(−4)+sin(4))2:e12cos2(−4)+2e6cos(4)cos(−4)+cos2(4)+e12sin2(−4)+2e6sin(4)sin(−4)+sin2(4)
(e6cos(−4)+cos(4))2+(e6sin(−4)+sin(4))2
(e6cos(−4)+cos(4))2:e12cos2(−4)+2e6cos(4)cos(−4)+cos2(4)
Applicare la formula del quadrato perfetto: (a+b)2=a2+2ab+b2a=e6cos(−4),b=cos(4)
=(e6cos(−4))2+2e6cos(−4)cos(4)+cos2(4)
(e6cos(−4))2=e12cos2(−4)
(e6cos(−4))2
Applica la regola degli esponenti: (a⋅b)n=anbn=cos2(−4)(e6)2
(e6)2:e12
Applica la regola degli esponenti: (ab)c=abc=e6⋅2
Moltiplica i numeri: 6⋅2=12=e12
=e12cos2(−4)
=e12cos2(−4)+2e6cos(4)cos(−4)+cos2(4)
=e12cos2(−4)+2e6cos(4)cos(−4)+cos2(4)+(e6sin(−4)+sin(4))2
(e6sin(−4)+sin(4))2:e12sin2(−4)+2e6sin(4)sin(−4)+sin2(4)
Applicare la formula del quadrato perfetto: (a+b)2=a2+2ab+b2a=e6sin(−4),b=sin(4)
=(e6sin(−4))2+2e6sin(−4)sin(4)+sin2(4)
(e6sin(−4))2=e12sin2(−4)
(e6sin(−4))2
Applica la regola degli esponenti: (a⋅b)n=anbn=sin2(−4)(e6)2
(e6)2:e12
Applica la regola degli esponenti: (ab)c=abc=e6⋅2
Moltiplica i numeri: 6⋅2=12=e12
=e12sin2(−4)
=e12sin2(−4)+2e6sin(4)sin(−4)+sin2(4)
=e12cos2(−4)+2e6cos(4)cos(−4)+cos2(4)+e12sin2(−4)+2e6sin(4)sin(−4)+sin2(4)
=e12cos2(−4)+2e6cos(4)cos(−4)+cos2(4)+e12sin2(−4)+2e6sin(4)sin(−4)+sin2(4)(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))+i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))​
Espandi (e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))+i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4)):e12cos2(−4)−cos2(4)+e12sin2(−4)−sin2(4)+2e6icos(4)sin(−4)−2e6isin(4)cos(−4)
(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))+i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))
Espandi (e6cos(−4)−cos(4))(e6cos(−4)+cos(4)):e12cos2(−4)−cos2(4)
(e6cos(−4)−cos(4))(e6cos(−4)+cos(4))
Applicare la formula differenza di due quadrati: (a−b)(a+b)=a2−b2a=e6cos(−4),b=cos(4)=(e6cos(−4))2−cos2(4)
(e6cos(−4))2=e12cos2(−4)
(e6cos(−4))2
Applica la regola degli esponenti: (a⋅b)n=anbn=cos2(−4)(e6)2
(e6)2:e12
Applica la regola degli esponenti: (ab)c=abc=e6⋅2
Moltiplica i numeri: 6⋅2=12=e12
=e12cos2(−4)
=e12cos2(−4)−cos2(4)
=e12cos2(−4)−cos2(4)+(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))+i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))
Espandi (e6sin(−4)−sin(4))(e6sin(−4)+sin(4)):e12sin2(−4)−sin2(4)
(e6sin(−4)−sin(4))(e6sin(−4)+sin(4))
Applicare la formula differenza di due quadrati: (a−b)(a+b)=a2−b2a=e6sin(−4),b=sin(4)=(e6sin(−4))2−sin2(4)
(e6sin(−4))2=e12sin2(−4)
(e6sin(−4))2
Applica la regola degli esponenti: (a⋅b)n=anbn=sin2(−4)(e6)2
(e6)2:e12
Applica la regola degli esponenti: (ab)c=abc=e6⋅2
Moltiplica i numeri: 6⋅2=12=e12
=e12sin2(−4)
=e12sin2(−4)−sin2(4)
=e12cos2(−4)−cos2(4)+e12sin2(−4)−sin2(4)+i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))
Espandi i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4)):2e6icos(4)sin(−4)−2e6isin(4)cos(−4)
i(2e6cos(4)sin(−4)−2e6sin(4)cos(−4))
Applicare la legge della distribuzione: a(b−c)=ab−aca=i,b=2e6cos(4)sin(−4),c=2e6sin(4)cos(−4)=i2e6cos(4)sin(−4)−i2e6sin(4)cos(−4)
=2e6icos(4)sin(−4)−2e6isin(4)cos(−4)
=e12cos2(−4)−cos2(4)+e12sin2(−4)−sin2(4)+2e6icos(4)sin(−4)−2e6isin(4)cos(−4)
=e12cos2(−4)+2e6cos(4)cos(−4)+cos2(4)+e12sin2(−4)+2e6sin(4)sin(−4)+sin2(4)e12cos2(−4)−cos2(4)+e12sin2(−4)−sin2(4)+2e6icos(4)sin(−4)−2e6isin(4)cos(−4)​
Applica la regola delle frazioni: ca±b​=ca​±cb​e12cos2(−4)+2e6cos(4)cos(−4)+cos2(4)+e12sin2(−4)+2e6sin(4)sin(−4)+sin2(4)e12cos2(−4)−cos2(4)+e12sin2(−4)−sin2(4)+2e6icos(4)sin(−4)−2e6isin(4)cos(−4)​=e12cos2(−4)+2e6cos(4)cos(−4)+cos2(4)+e12sin2(−4)+2e6sin(4)sin(−4)+sin2(4)e12cos2(−4)​−e12cos2(−4)+2e6cos(4)cos(−4)+cos2(4)+e12sin2(−4)+2e6sin(4)sin(−4)+sin2(4)cos2(4)​+e12cos2(−4)+2e6cos(4)cos(−4)+cos2(4)+e12sin2(−4)+2e6sin(4)sin(−4)+sin2(4)e12sin2(−4)​−e12cos2(−4)+2e6cos(4)cos(−4)+cos2(4)+e12sin2(−4)+2e6sin(4)sin(−4)+sin2(4)sin2(4)​+e12cos2(−4)+2e6cos(4)cos(−4)+cos2(4)+e12sin2(−4)+2e6sin(4)sin(−4)+sin2(4)2e6icos(4)sin(−4)​−e12cos2(−4)+2e6cos(4)cos(−4)+cos2(4)+e12sin2(−4)+2e6sin(4)sin(−4)+sin2(4)2e6isin(4)cos(−4)​=e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)e12cos2(−4)​−e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)cos2(4)​+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)e12sin2(−4)​−e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)sin2(4)​+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)2e6icos(4)sin(−4)​−e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)2e6isin(4)cos(−4)​
Raggruppare la parte reale e la parte immaginaria del numero complesso=(e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)e12cos2(−4)​−e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)cos2(4)​+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)e12sin2(−4)​−e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)sin2(4)​)+(e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)2e6cos(4)sin(−4)​−e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)2e6sin(4)cos(−4)​)i
e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)2e6cos(4)sin(−4)​−e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)2e6sin(4)cos(−4)​=e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)2e6cos(4)sin(−4)−2e6sin(4)cos(−4)​
e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)2e6cos(4)sin(−4)​−e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)2e6sin(4)cos(−4)​
Applicare la regola ca​±cb​=ca±b​=e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)2e6cos(4)sin(−4)−2e6sin(4)cos(−4)​
=(e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)e12cos2(−4)​−e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)cos2(4)​+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)e12sin2(−4)​−e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)sin2(4)​)+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)2e6cos(4)sin(−4)−2e6sin(4)cos(−4)​i
e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)e12cos2(−4)​−e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)cos2(4)​+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)e12sin2(−4)​−e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)sin2(4)​=e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)e12cos2(−4)−cos2(4)+e12sin2(−4)−sin2(4)​
e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)e12cos2(−4)​−e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)cos2(4)​+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)e12sin2(−4)​−e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)sin2(4)​
Applicare la regola ca​±cb​=ca±b​=e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)e12cos2(−4)−cos2(4)+e12sin2(−4)−sin2(4)​
=e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)e12cos2(−4)−cos2(4)+e12sin2(−4)−sin2(4)​+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)2e6cos(4)sin(−4)−2e6sin(4)cos(−4)​i
=e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)e12cos2(−4)−cos2(4)+e12sin2(−4)−sin2(4)​+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)+cos2(4)+sin2(4)2e6cos(4)sin(−4)−2e6sin(4)cos(−4)​i
=cos2(4)+sin2(4)+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)−cos2(4)−sin2(4)+e12cos2(−4)+e12sin2(−4)​+icos2(4)+sin2(4)+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)−2e6sin(4)cos(−4)+2e6cos(4)sin(−4)​
Usare la proprietà seguente: sin(−x)=−sin(x)sin(−4)=−sin(4)=cos2(4)+sin2(4)+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)−cos2(4)−sin2(4)+e12cos2(−4)+e12sin2(−4)​+icos2(4)+sin2(4)+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)(−sin(4))−2e6sin(4)cos(−4)+2e6cos(4)sin(−4)​
Usare la proprietà seguente: cos(−x)=cos(x)cos(−4)=cos(4)=cos2(4)+sin2(4)+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)−cos2(4)−sin2(4)+e12cos2(−4)+e12sin2(−4)​+icos2(4)+sin2(4)+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(4)+2e6sin(4)(−sin(4))−2e6sin(4)cos(−4)+2e6cos(4)sin(−4)​
Usare la proprietà seguente: sin(−x)=−sin(x)sin(−4)=−sin(4)=cos2(4)+sin2(4)+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)−cos2(4)−sin2(4)+e12cos2(−4)+e12sin2(−4)​+icos2(4)+sin2(4)+e12cos2(−4)+e12(−sin(4))2+2e6cos(4)cos(4)+2e6sin(4)(−sin(4))−2e6sin(4)cos(−4)+2e6cos(4)sin(−4)​
Usare la proprietà seguente: cos(−x)=cos(x)cos(−4)=cos(4)=cos2(4)+sin2(4)+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)−cos2(4)−sin2(4)+e12cos2(−4)+e12sin2(−4)​+icos2(4)+sin2(4)+e12cos2(4)+e12(−sin(4))2+2e6cos(4)cos(4)+2e6sin(4)(−sin(4))−2e6sin(4)cos(−4)+2e6cos(4)sin(−4)​
Usare la proprietà seguente: sin(−x)=−sin(x)sin(−4)=−sin(4)=cos2(4)+sin2(4)+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)−cos2(4)−sin2(4)+e12cos2(−4)+e12sin2(−4)​+icos2(4)+sin2(4)+e12cos2(4)+e12(−sin(4))2+2e6cos(4)cos(4)+2e6sin(4)(−sin(4))−2e6sin(4)cos(−4)+2e6cos(4)(−sin(4))​
Usare la proprietà seguente: cos(−x)=cos(x)cos(−4)=cos(4)=cos2(4)+sin2(4)+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)sin(−4)−cos2(4)−sin2(4)+e12cos2(−4)+e12sin2(−4)​+icos2(4)+sin2(4)+e12cos2(4)+e12(−sin(4))2+2e6cos(4)cos(4)+2e6sin(4)(−sin(4))−2e6sin(4)cos(4)+2e6cos(4)(−sin(4))​
Usare la proprietà seguente: sin(−x)=−sin(x)sin(−4)=−sin(4)=cos2(4)+sin2(4)+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(−4)+2e6sin(4)(−sin(4))−cos2(4)−sin2(4)+e12cos2(−4)+e12sin2(−4)​+icos2(4)+sin2(4)+e12cos2(4)+e12(−sin(4))2+2e6cos(4)cos(4)+2e6sin(4)(−sin(4))−2e6sin(4)cos(4)+2e6cos(4)(−sin(4))​
Usare la proprietà seguente: cos(−x)=cos(x)cos(−4)=cos(4)=cos2(4)+sin2(4)+e12cos2(−4)+e12sin2(−4)+2e6cos(4)cos(4)+2e6sin(4)(−sin(4))−cos2(4)−sin2(4)+e12cos2(−4)+e12sin2(−4)​+icos2(4)+sin2(4)+e12cos2(4)+e12(−sin(4))2+2e6cos(4)cos(4)+2e6sin(4)(−sin(4))−2e6sin(4)cos(4)+2e6cos(4)(−sin(4))​
Usare la proprietà seguente: sin(−x)=−sin(x)sin(−4)=−sin(4)=cos2(4)+sin2(4)+e12cos2(−4)+e12(−sin(4))2+2e6cos(4)cos(4)+2e6sin(4)(−sin(4))−cos2(4)−sin2(4)+e12cos2(−4)+e12sin2(−4)​+icos2(4)+sin2(4)+e12cos2(4)+e12(−sin(4))2+2e6cos(4)cos(4)+2e6sin(4)(−sin(4))−2e6sin(4)cos(4)+2e6cos(4)(−sin(4))​
Usare la proprietà seguente: cos(−x)=cos(x)cos(−4)=cos(4)=cos2(4)+sin2(4)+e12cos2(4)+e12(−sin(4))2+2e6cos(4)cos(4)+2e6sin(4)(−sin(4))−cos2(4)−sin2(4)+e12cos2(−4)+e12sin2(−4)​+icos2(4)+sin2(4)+e12cos2(4)+e12(−sin(4))2+2e6cos(4)cos(4)+2e6sin(4)(−sin(4))−2e6sin(4)cos(4)+2e6cos(4)(−sin(4))​
Usare la proprietà seguente: sin(−x)=−sin(x)sin(−4)=−sin(4)=cos2(4)+sin2(4)+e12cos2(4)+e12(−sin(4))2+2e6cos(4)cos(4)+2e6sin(4)(−sin(4))−cos2(4)−sin2(4)+e12cos2(−4)+e12(−sin(4))2​+icos2(4)+sin2(4)+e12cos2(4)+e12(−sin(4))2+2e6cos(4)cos(4)+2e6sin(4)(−sin(4))−2e6sin(4)cos(4)+2e6cos(4)(−sin(4))​
Usare la proprietà seguente: cos(−x)=cos(x)cos(−4)=cos(4)=cos2(4)+sin2(4)+e12cos2(4)+e12(−sin(4))2+2e6cos(4)cos(4)+2e6sin(4)(−sin(4))−cos2(4)−sin2(4)+e12cos2(4)+e12(−sin(4))2​+icos2(4)+sin2(4)+e12cos2(4)+e12(−sin(4))2+2e6cos(4)cos(4)+2e6sin(4)(−sin(4))−2e6sin(4)cos(4)+2e6cos(4)(−sin(4))​
Semplificare=cos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)−cos2(4)−sin2(4)+e12cos2(4)+e12sin2(4)​−icos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)4e6cos(4)sin(4)​
=ln(cos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)−cos2(4)−sin2(4)+e12cos2(4)+e12sin2(4)​−icos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)4e6cos(4)sin(4)​)
Semplifica ln(cos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)−cos2(4)−sin2(4)+e12cos2(4)+e12sin2(4)​−icos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)4e6cos(4)sin(4)​):ln(cos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)−cos2(4)−sin2(4)+e12cos2(4)+e12sin2(4)−4e6icos(4)sin(4)​)
ln(cos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)−cos2(4)−sin2(4)+e12cos2(4)+e12sin2(4)​−icos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)4e6cos(4)sin(4)​)
Moltiplicare icos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)4e6cos(4)sin(4)​:cos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)4e6icos(4)sin(4)​
icos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)4e6cos(4)sin(4)​
Moltiplica le frazioni: a⋅cb​=ca⋅b​=cos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)4e6cos(4)sin(4)i​
=ln(e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)+cos2(4)+sin2(4)e12cos2(4)−cos2(4)+e12sin2(4)−sin2(4)​−e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)+cos2(4)+sin2(4)4e6icos(4)sin(4)​)
Unisci cos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)−cos2(4)−sin2(4)+e12cos2(4)+e12sin2(4)​−cos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)4e6cos(4)sin(4)i​:cos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)−cos2(4)−sin2(4)+e12cos2(4)+e12sin2(4)−4e6icos(4)sin(4)​
cos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)−cos2(4)−sin2(4)+e12cos2(4)+e12sin2(4)​−cos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)4e6cos(4)sin(4)i​
Poiché i denominatori sono uguali, combinare le frazioni: ca​±cb​=ca±b​=cos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)−cos2(4)−sin2(4)+e12cos2(4)+e12sin2(4)−4e6cos(4)sin(4)i​
=ln(cos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)−cos2(4)−sin2(4)+e12cos2(4)+e12sin2(4)−4e6cos(4)sin(4)i​)
=ln(cos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)−cos2(4)−sin2(4)+e12cos2(4)+e12sin2(4)−4e6icos(4)sin(4)​)
=ln(cos2(4)+sin2(4)+e12cos2(4)+e12sin2(4)+2e6cos2(4)−2e6sin2(4)−cos2(4)−sin2(4)+e12cos2(4)+e12sin2(4)−4e6icos(4)sin(4)​)

Esempi popolari

arccos(1.66)arccos(1.66)arctan(20/5)arctan(520​)tan(-12/5)tan(−512​)(sin(pi/4))/(1-cos(pi/4))1−cos(4π​)sin(4π​)​8sin(135)8sin(135∘)
Strumenti di StudioAI Math SolverAI ChatFogli di lavoroPraticaTrucchettiCalcolatriciCalcolatrice graficaGeometry CalculatorVerifica soluzione
AppApplicazione Symbolab (Android)Calcolatrice grafica (Android)Pratica (Android)Applicazione Symbolab (iOS)Calcolatrice grafica (iOS)Pratica (iOS)Estensione Chrome
AziendaRiguardo SymbolabBlogGuida
LegalePrivacyService TermsPolitica CookieImpostazioni dei cookieNon vendere o condividere le mie informazioni personaliCopyright, Community Linee guida, DSA & altre Risorse LegaliLearneo Centro Legale
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024