解答
積分計算機導関数計算機代数計算機行列計算機もっと...
グラフ作成
折れ線グラフ指数グラフ二次グラフ正弦グラフもっと...
計算機能
BMI計算機複利計算機パーセンテージ計算機加速度計算機もっと...
幾何学
ピタゴラス定理計算機円面積計算機二等辺三角形計算機三角形計算機もっと...
AI Chat
ツール
ノートグループチートシートワークシート練習検証する
ja
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
人気のある 三角関数 >

2sin((pix)/2)+1=0

  • 前代数
  • 代数
  • 前微積分
  • 微分積分
  • 関数
  • 線形代数
  • 三角関数
  • 統計
  • 化学
  • 経済学
  • 換算

解

2sin(2πx​)+1=0

解

x=37​+4n,x=311​+4n
+1
度
x=133.69015…∘+229.18311…∘n,x=210.08452…∘+229.18311…∘n
解答ステップ
2sin(2πx​)+1=0
1を右側に移動します
2sin(2πx​)+1=0
両辺から1を引く2sin(2πx​)+1−1=0−1
簡素化2sin(2πx​)=−1
2sin(2πx​)=−1
以下で両辺を割る2
2sin(2πx​)=−1
以下で両辺を割る222sin(2πx​)​=2−1​
簡素化sin(2πx​)=−21​
sin(2πx​)=−21​
以下の一般解 sin(2πx​)=−21​
sin(x)2πn 循環を含む周期性テーブル:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
2πx​=67π​+2πn,2πx​=611π​+2πn
2πx​=67π​+2πn,2πx​=611π​+2πn
解く 2πx​=67π​+2πn:x=37​+4n
2πx​=67π​+2πn
以下で両辺を乗じる:2
2πx​=67π​+2πn
以下で両辺を乗じる:222πx​=2⋅67π​+2⋅2πn
簡素化
22πx​=2⋅67π​+2⋅2πn
簡素化 22πx​:πx
22πx​
数を割る:22​=1=πx
簡素化 2⋅67π​+2⋅2πn:37π​+4πn
2⋅67π​+2⋅2πn
2⋅67π​=37π​
2⋅67π​
分数を乗じる: a⋅cb​=ca⋅b​=67π2​
数を乗じる:7⋅2=14=614π​
共通因数を約分する:2=37π​
2⋅2πn=4πn
2⋅2πn
数を乗じる:2⋅2=4=4πn
=37π​+4πn
πx=37π​+4πn
πx=37π​+4πn
πx=37π​+4πn
以下で両辺を割るπ
πx=37π​+4πn
以下で両辺を割るπππx​=π37π​​+π4πn​
簡素化
ππx​=π37π​​+π4πn​
簡素化 ππx​:x
ππx​
共通因数を約分する:π=x
簡素化 π37π​​+π4πn​:37​+4n
π37π​​+π4πn​
π37π​​=37​
π37π​​
分数の規則を適用する: acb​​=c⋅ab​=3π7π​
共通因数を約分する:π=37​
π4πn​=4n
π4πn​
共通因数を約分する:π=4n
=37​+4n
x=37​+4n
x=37​+4n
x=37​+4n
解く 2πx​=611π​+2πn:x=311​+4n
2πx​=611π​+2πn
以下で両辺を乗じる:2
2πx​=611π​+2πn
以下で両辺を乗じる:222πx​=2⋅611π​+2⋅2πn
簡素化
22πx​=2⋅611π​+2⋅2πn
簡素化 22πx​:πx
22πx​
数を割る:22​=1=πx
簡素化 2⋅611π​+2⋅2πn:311π​+4πn
2⋅611π​+2⋅2πn
2⋅611π​=311π​
2⋅611π​
分数を乗じる: a⋅cb​=ca⋅b​=611π2​
数を乗じる:11⋅2=22=622π​
共通因数を約分する:2=311π​
2⋅2πn=4πn
2⋅2πn
数を乗じる:2⋅2=4=4πn
=311π​+4πn
πx=311π​+4πn
πx=311π​+4πn
πx=311π​+4πn
以下で両辺を割るπ
πx=311π​+4πn
以下で両辺を割るπππx​=π311π​​+π4πn​
簡素化
ππx​=π311π​​+π4πn​
簡素化 ππx​:x
ππx​
共通因数を約分する:π=x
簡素化 π311π​​+π4πn​:311​+4n
π311π​​+π4πn​
π311π​​=311​
π311π​​
分数の規則を適用する: acb​​=c⋅ab​=3π11π​
共通因数を約分する:π=311​
π4πn​=4n
π4πn​
共通因数を約分する:π=4n
=311​+4n
x=311​+4n
x=311​+4n
x=311​+4n
x=37​+4n,x=311​+4n

グラフ

Sorry, your browser does not support this application
インタラクティブなグラフを表示

人気の例

sin(x)=0.819sin(x)=0.819tan(x)=1.1tan(x)=1.1sin(x)=45sin(x)=45cot(x)=-ln(2)cot(x)=−ln(2)2cos(5θ)=02cos(5θ)=0
勉強ツールAI Math SolverAI Chatワークシート練習チートシート計算機能グラフ作成計算機ジオメトリーカルキュレーターソリューションの検証
アプリSymbolab アプリ (Android)グラフ作成計算機 (Android)練習 (Android)Symbolab アプリ (iOS)グラフ作成計算機 (iOS)練習 (iOS)Chrome拡張機能
会社Symbolabについてブログヘルプ
法務プライバシーService TermsCookieに関するポリシークッキー設定私の個人情報を販売または共有しないでください著作権, コミュニティガイドライン, DSA & その他の法務リソースLearneo法務センター
ソーシャルメディア
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024