解答
tan(x)+tan(x+45∘)=−2
解答
x=120∘+180∘n,x=60∘+180∘n
+1
弧度
x=32π+πn,x=3π+πn求解步骤
tan(x)+tan(x+45∘)=−2
使用三角恒等式改写
tan(x)+tan(x+45∘)=−2
使用三角恒等式改写
tan(x+45∘)
使用基本三角恒等式: tan(x)=cos(x)sin(x)=cos(x+45∘)sin(x+45∘)
使用角和恒等式: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=cos(x+45∘)sin(x)cos(45∘)+cos(x)sin(45∘)
使用角和恒等式: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(x)cos(45∘)−sin(x)sin(45∘)sin(x)cos(45∘)+cos(x)sin(45∘)
化简 cos(x)cos(45∘)−sin(x)sin(45∘)sin(x)cos(45∘)+cos(x)sin(45∘):cos(x)−sin(x)sin(x)+cos(x)
cos(x)cos(45∘)−sin(x)sin(45∘)sin(x)cos(45∘)+cos(x)sin(45∘)
sin(x)cos(45∘)+cos(x)sin(45∘)=22sin(x)+22cos(x)
sin(x)cos(45∘)+cos(x)sin(45∘)
化简 cos(45∘):22
cos(45∘)
使用以下普通恒等式:cos(45∘)=22
cos(x) 周期表(周期为 360∘n):
x030∘45∘60∘90∘120∘135∘150∘cos(x)12322210−21−22−23x180∘210∘225∘240∘270∘300∘315∘330∘cos(x)−1−23−22−210212223
=22=22sin(x)+sin(45∘)cos(x)
化简 sin(45∘):22
sin(45∘)
使用以下普通恒等式:sin(45∘)=22
sin(x) 周期表(周期为 360∘n"):
x030∘45∘60∘90∘120∘135∘150∘sin(x)02122231232221x180∘210∘225∘240∘270∘300∘315∘330∘sin(x)0−21−22−23−1−23−22−21
=22=22sin(x)+22cos(x)
=cos(45∘)cos(x)−sin(45∘)sin(x)22sin(x)+22cos(x)
cos(x)cos(45∘)−sin(x)sin(45∘)=22cos(x)−22sin(x)
cos(x)cos(45∘)−sin(x)sin(45∘)
化简 cos(45∘):22
cos(45∘)
使用以下普通恒等式:cos(45∘)=22
cos(x) 周期表(周期为 360∘n):
x030∘45∘60∘90∘120∘135∘150∘cos(x)12322210−21−22−23x180∘210∘225∘240∘270∘300∘315∘330∘cos(x)−1−23−22−210212223
=22=22cos(x)−sin(45∘)sin(x)
化简 sin(45∘):22
sin(45∘)
使用以下普通恒等式:sin(45∘)=22
sin(x) 周期表(周期为 360∘n"):
x030∘45∘60∘90∘120∘135∘150∘sin(x)02122231232221x180∘210∘225∘240∘270∘300∘315∘330∘sin(x)0−21−22−23−1−23−22−21
=22=22cos(x)−22sin(x)
=22cos(x)−22sin(x)22sin(x)+22cos(x)
乘 cos(x)22:22cos(x)
cos(x)22
分式相乘: a⋅cb=ca⋅b=22cos(x)
=22cos(x)−22sin(x)22sin(x)+22cos(x)
乘 sin(x)22:22sin(x)
sin(x)22
分式相乘: a⋅cb=ca⋅b=22sin(x)
=22cos(x)−22sin(x)22sin(x)+22cos(x)
乘 sin(x)22:22sin(x)
sin(x)22
分式相乘: a⋅cb=ca⋅b=22sin(x)
=22cos(x)−22sin(x)22sin(x)+22cos(x)
乘 cos(x)22:22cos(x)
cos(x)22
分式相乘: a⋅cb=ca⋅b=22cos(x)
=22cos(x)−22sin(x)22sin(x)+22cos(x)
合并分式 22cos(x)−22sin(x):22cos(x)−2sin(x)
使用法则 ca±cb=ca±b=22cos(x)−2sin(x)
=22cos(x)−2sin(x)22sin(x)+22cos(x)
合并分式 22sin(x)+22cos(x):22sin(x)+2cos(x)
使用法则 ca±cb=ca±b=22sin(x)+2cos(x)
=22cos(x)−2sin(x)22sin(x)+2cos(x)
分式相除: dcba=b⋅ca⋅d=2(2cos(x)−2sin(x))(2sin(x)+2cos(x))⋅2
约分:2=2cos(x)−2sin(x)2sin(x)+2cos(x)
因式分解出通项 2=2cos(x)−2sin(x)2(sin(x)+cos(x))
因式分解出通项 2=2(cos(x)−sin(x))2(sin(x)+cos(x))
约分:2=cos(x)−sin(x)sin(x)+cos(x)
=cos(x)−sin(x)sin(x)+cos(x)
tan(x)+cos(x)−sin(x)sin(x)+cos(x)=−2
tan(x)+cos(x)−sin(x)sin(x)+cos(x)=−2
两边减去 −2tan(x)+cos(x)−sin(x)sin(x)+cos(x)+2=0
化简 tan(x)+cos(x)−sin(x)sin(x)+cos(x)+2:cos(x)−sin(x)tan(x)cos(x)−tan(x)sin(x)−sin(x)+3cos(x)
tan(x)+cos(x)−sin(x)sin(x)+cos(x)+2
将项转换为分式: tan(x)=cos(x)−sin(x)tan(x)(cos(x)−sin(x)),2=cos(x)−sin(x)2(cos(x)−sin(x))=cos(x)−sin(x)tan(x)(cos(x)−sin(x))+cos(x)−sin(x)sin(x)+cos(x)+cos(x)−sin(x)2(cos(x)−sin(x))
因为分母相等,所以合并分式: ca±cb=ca±b=cos(x)−sin(x)tan(x)(cos(x)−sin(x))+sin(x)+cos(x)+2(cos(x)−sin(x))
乘开 tan(x)(cos(x)−sin(x))+sin(x)+cos(x)+2(cos(x)−sin(x)):tan(x)cos(x)−tan(x)sin(x)−sin(x)+3cos(x)
tan(x)(cos(x)−sin(x))+sin(x)+cos(x)+2(cos(x)−sin(x))
乘开 tan(x)(cos(x)−sin(x)):tan(x)cos(x)−tan(x)sin(x)
tan(x)(cos(x)−sin(x))
使用分配律: a(b−c)=ab−aca=tan(x),b=cos(x),c=sin(x)=tan(x)cos(x)−tan(x)sin(x)
=tan(x)cos(x)−tan(x)sin(x)+sin(x)+cos(x)+2(cos(x)−sin(x))
乘开 2(cos(x)−sin(x)):2cos(x)−2sin(x)
2(cos(x)−sin(x))
使用分配律: a(b−c)=ab−aca=2,b=cos(x),c=sin(x)=2cos(x)−2sin(x)
=tan(x)cos(x)−tan(x)sin(x)+sin(x)+cos(x)+2cos(x)−2sin(x)
化简 tan(x)cos(x)−tan(x)sin(x)+sin(x)+cos(x)+2cos(x)−2sin(x):tan(x)cos(x)−tan(x)sin(x)−sin(x)+3cos(x)
tan(x)cos(x)−tan(x)sin(x)+sin(x)+cos(x)+2cos(x)−2sin(x)
同类项相加:cos(x)+2cos(x)=3cos(x)=tan(x)cos(x)−tan(x)sin(x)+sin(x)+3cos(x)−2sin(x)
同类项相加:sin(x)−2sin(x)=−sin(x)=tan(x)cos(x)−tan(x)sin(x)−sin(x)+3cos(x)
=tan(x)cos(x)−tan(x)sin(x)−sin(x)+3cos(x)
=cos(x)−sin(x)tan(x)cos(x)−tan(x)sin(x)−sin(x)+3cos(x)
cos(x)−sin(x)tan(x)cos(x)−tan(x)sin(x)−sin(x)+3cos(x)=0
g(x)f(x)=0⇒f(x)=0tan(x)cos(x)−tan(x)sin(x)−sin(x)+3cos(x)=0
用 sin, cos 表示
−sin(x)+3cos(x)+cos(x)tan(x)−sin(x)tan(x)
使用基本三角恒等式: tan(x)=cos(x)sin(x)=−sin(x)+3cos(x)+cos(x)cos(x)sin(x)−sin(x)cos(x)sin(x)
化简 −sin(x)+3cos(x)+cos(x)cos(x)sin(x)−sin(x)cos(x)sin(x):cos(x)3cos2(x)−sin2(x)
−sin(x)+3cos(x)+cos(x)cos(x)sin(x)−sin(x)cos(x)sin(x)
cos(x)cos(x)sin(x)=sin(x)
cos(x)cos(x)sin(x)
分式相乘: a⋅cb=ca⋅b=cos(x)sin(x)cos(x)
约分:cos(x)=sin(x)
sin(x)cos(x)sin(x)=cos(x)sin2(x)
sin(x)cos(x)sin(x)
分式相乘: a⋅cb=ca⋅b=cos(x)sin(x)sin(x)
sin(x)sin(x)=sin2(x)
sin(x)sin(x)
使用指数法则: ab⋅ac=ab+csin(x)sin(x)=sin1+1(x)=sin1+1(x)
数字相加:1+1=2=sin2(x)
=cos(x)sin2(x)
=−sin(x)+3cos(x)+sin(x)−cos(x)sin2(x)
同类项相加:−sin(x)+sin(x)=0=3cos(x)−cos(x)sin2(x)
将项转换为分式: 3cos(x)=cos(x)3cos(x)cos(x)=cos(x)3cos(x)cos(x)−cos(x)sin2(x)
因为分母相等,所以合并分式: ca±cb=ca±b=cos(x)3cos(x)cos(x)−sin2(x)
3cos(x)cos(x)−sin2(x)=3cos2(x)−sin2(x)
3cos(x)cos(x)−sin2(x)
3cos(x)cos(x)=3cos2(x)
3cos(x)cos(x)
使用指数法则: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=3cos1+1(x)
数字相加:1+1=2=3cos2(x)
=3cos2(x)−sin2(x)
=cos(x)3cos2(x)−sin2(x)
=cos(x)3cos2(x)−sin2(x)
cos(x)−sin2(x)+3cos2(x)=0
g(x)f(x)=0⇒f(x)=0−sin2(x)+3cos2(x)=0
分解 −sin2(x)+3cos2(x):(3cos(x)+sin(x))(3cos(x)−sin(x))
−sin2(x)+3cos2(x)
将 3cos2(x)−sin2(x) 改写为 (3cos(x))2−sin2(x)
3cos2(x)−sin2(x)
使用根式运算法则: a=(a)23=(3)2=(3)2cos2(x)−sin2(x)
使用指数法则: ambm=(ab)m(3)2cos2(x)=(3cos(x))2=(3cos(x))2−sin2(x)
=(3cos(x))2−sin2(x)
使用平方差公式: x2−y2=(x+y)(x−y)(3cos(x))2−sin2(x)=(3cos(x)+sin(x))(3cos(x)−sin(x))=(3cos(x)+sin(x))(3cos(x)−sin(x))
(3cos(x)+sin(x))(3cos(x)−sin(x))=0
分别求解每个部分3cos(x)+sin(x)=0or3cos(x)−sin(x)=0
3cos(x)+sin(x)=0:x=120∘+180∘n
3cos(x)+sin(x)=0
使用三角恒等式改写
3cos(x)+sin(x)=0
在两边除以 cos(x),cos(x)=0cos(x)3cos(x)+sin(x)=cos(x)0
化简3+cos(x)sin(x)=0
使用基本三角恒等式: cos(x)sin(x)=tan(x)3+tan(x)=0
3+tan(x)=0
将 3到右边
3+tan(x)=0
两边减去 33+tan(x)−3=0−3
化简tan(x)=−3
tan(x)=−3
tan(x)=−3的通解
tan(x) 周期表(周期为 180∘n):
x030∘45∘60∘90∘120∘135∘150∘tan(x)03313±∞−3−1−33
x=120∘+180∘n
x=120∘+180∘n
3cos(x)−sin(x)=0:x=60∘+180∘n
3cos(x)−sin(x)=0
使用三角恒等式改写
3cos(x)−sin(x)=0
在两边除以 cos(x),cos(x)=0cos(x)3cos(x)−sin(x)=cos(x)0
化简3−cos(x)sin(x)=0
使用基本三角恒等式: cos(x)sin(x)=tan(x)3−tan(x)=0
3−tan(x)=0
将 3到右边
3−tan(x)=0
两边减去 33−tan(x)−3=0−3
化简−tan(x)=−3
−tan(x)=−3
两边除以 −1
−tan(x)=−3
两边除以 −1−1−tan(x)=−1−3
化简tan(x)=3
tan(x)=3
tan(x)=3的通解
tan(x) 周期表(周期为 180∘n):
x030∘45∘60∘90∘120∘135∘150∘tan(x)03313±∞−3−1−33
x=60∘+180∘n
x=60∘+180∘n
合并所有解x=120∘+180∘n,x=60∘+180∘n