Soluciones
Calculadora de integrales (antiderivadas)Calculadora de derivadasCalculadora de ÁlgebraCalculadora de matricesMás...
Gráficos
Gráfica de líneaGráfica exponencialGráfica cuadráticaGráfico de senoMás...
Calculadoras
Calculadora de IMCCalculadora de interés compuestoCalculadora de porcentajeCalculadora de aceleraciónMás...
Geometría
Calculadora del teorema de pitágorasCalculadora del área del círculoCalculadora de triángulo isóscelesCalculadora de TriángulosMás...
Herramientas
CuadernoGruposHojas de referenciaHojas de trabajoPracticaVerificar
es
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometría >

1/(6tan^6(x))= 1/(6sec^6(x))

  • Pre-Álgebra
  • Álgebra
  • Precálculo
  • Cálculo
  • Funciones
  • Álgebra Lineal
  • Trigonometría
  • Estadística
  • Química
  • Economía
  • Conversiones

Solución

6tan6(x)1​=6sec6(x)1​

Solución

Sinsolucioˊnparax∈R
Pasos de solución
6tan6(x)1​=6sec6(x)1​
Restar 6sec6(x)1​ de ambos lados6tan6(x)1​−6sec6(x)1​=0
Simplificar 6tan6(x)1​−6sec6(x)1​:6tan6(x)sec6(x)sec6(x)−tan6(x)​
6tan6(x)1​−6sec6(x)1​
Mínimo común múltiplo de 6tan6(x),6sec6(x):6tan6(x)sec6(x)
6tan6(x),6sec6(x)
Mínimo común múltiplo (MCM)
Mínimo común múltiplo de 6,6:6
6,6
Mínimo común múltiplo (MCM)
Descomposición en factores primos de 6:2⋅3
6
6divida por 26=3⋅2=2⋅3
2,3 son números primos, por lo tanto, no se pueden factorizar mas=2⋅3
Descomposición en factores primos de 6:2⋅3
6
6divida por 26=3⋅2=2⋅3
2,3 son números primos, por lo tanto, no se pueden factorizar mas=2⋅3
Multiplicar cada factor el mayor número de veces que ocurra en cualquier 6 o 6=2⋅3
Multiplicar los numeros: 2⋅3=6=6
Calcular una expresión que este compuesta de factores que aparezcan tanto en 6tan6(x) o 6sec6(x)=6tan6(x)sec6(x)
Reescribir las fracciones basandose en el mínimo común denominador
Multiplicar cada numerador por la misma cantidad necesaria para multiplicar el denominador correspondiente y convertirlo en el mínimo común denominador
Para 6tan6(x)1​:multiplicar el denominador y el numerador por sec6(x)6tan6(x)1​=6tan6(x)sec6(x)1⋅sec6(x)​=6tan6(x)sec6(x)sec6(x)​
Para 6sec6(x)1​:multiplicar el denominador y el numerador por tan6(x)6sec6(x)1​=6sec6(x)tan6(x)1⋅tan6(x)​=6tan6(x)sec6(x)tan6(x)​
=6tan6(x)sec6(x)sec6(x)​−6tan6(x)sec6(x)tan6(x)​
Ya que los denominadores son iguales, combinar las fracciones: ca​±cb​=ca±b​=6tan6(x)sec6(x)sec6(x)−tan6(x)​
6tan6(x)sec6(x)sec6(x)−tan6(x)​=0
g(x)f(x)​=0⇒f(x)=0sec6(x)−tan6(x)=0
Factorizar sec6(x)−tan6(x):(sec(x)+tan(x))(sec2(x)−sec(x)tan(x)+tan2(x))(sec(x)−tan(x))(sec2(x)+sec(x)tan(x)+tan2(x))
sec6(x)−tan6(x)
Reescribir sec6(x)−tan6(x) como (sec3(x))2−(tan3(x))2
sec6(x)−tan6(x)
Aplicar las leyes de los exponentes: abc=(ab)csec6(x)=(sec3(x))2=(sec3(x))2−tan6(x)
Aplicar las leyes de los exponentes: abc=(ab)ctan6(x)=(tan3(x))2=(sec3(x))2−(tan3(x))2
=(sec3(x))2−(tan3(x))2
Aplicar la siguiente regla para binomios al cuadrado: x2−y2=(x+y)(x−y)(sec3(x))2−(tan3(x))2=(sec3(x)+tan3(x))(sec3(x)−tan3(x))=(sec3(x)+tan3(x))(sec3(x)−tan3(x))
Factorizar sec3(x)+tan3(x):(sec(x)+tan(x))(sec2(x)−sec(x)tan(x)+tan2(x))
sec3(x)+tan3(x)
Aplicar la siguiente regla de productos notables (Suma de cubos): x3+y3=(x+y)(x2−xy+y2)sec3(x)+tan3(x)=(sec(x)+tan(x))(sec2(x)−sec(x)tan(x)+tan2(x))=(sec(x)+tan(x))(sec2(x)−sec(x)tan(x)+tan2(x))
=(sec(x)+tan(x))(sec2(x)−sec(x)tan(x)+tan2(x))(sec3(x)−tan3(x))
Factorizar sec3(x)−tan3(x):(sec(x)−tan(x))(sec2(x)+sec(x)tan(x)+tan2(x))
sec3(x)−tan3(x)
Aplicar la siguiente regla de productos notables (Diferencia de cubos): x3−y3=(x−y)(x2+xy+y2)sec3(x)−tan3(x)=(sec(x)−tan(x))(sec2(x)+sec(x)tan(x)+tan2(x))=(sec(x)−tan(x))(sec2(x)+sec(x)tan(x)+tan2(x))
=(sec(x)+tan(x))(sec2(x)−sec(x)tan(x)+tan2(x))(sec(x)−tan(x))(sec2(x)+sec(x)tan(x)+tan2(x))
(sec(x)+tan(x))(sec2(x)−sec(x)tan(x)+tan2(x))(sec(x)−tan(x))(sec2(x)+sec(x)tan(x)+tan2(x))=0
Re-escribir usando identidades trigonométricas
(sec(x)+tan(x))(sec2(x)−sec(x)tan(x)+tan2(x))(sec(x)−tan(x))(sec2(x)+sec(x)tan(x)+tan2(x))
(sec(x)+tan(x))(sec(x)−tan(x))=1
(sec(x)+tan(x))(sec(x)−tan(x))
Expandir (sec(x)+tan(x))(sec(x)−tan(x)):sec2(x)−tan2(x)
(sec(x)+tan(x))(sec(x)−tan(x))
Aplicar la siguiente regla para binomios al cuadrado: (a+b)(a−b)=a2−b2a=sec(x),b=tan(x)=sec2(x)−tan2(x)
=sec2(x)−tan2(x)
Utilizar la identidad pitagórica: sec2(x)=tan2(x)+1sec2(x)−tan2(x)=1=1
=1⋅(sec2(x)+tan2(x)+sec(x)tan(x))(sec2(x)+tan2(x)−sec(x)tan(x))
Simplificar 1⋅(sec2(x)+tan2(x)+sec(x)tan(x))(sec2(x)+tan2(x)−sec(x)tan(x)):(sec2(x)+tan2(x)+sec(x)tan(x))(sec2(x)+tan2(x)−sec(x)tan(x))
1⋅(sec2(x)+tan2(x)+sec(x)tan(x))(sec2(x)+tan2(x)−sec(x)tan(x))
Multiplicar: 1⋅(sec2(x)+tan2(x)+sec(x)tan(x))=(sec2(x)+tan2(x)+sec(x)tan(x))=(sec2(x)+tan2(x)+sec(x)tan(x))(sec2(x)+tan2(x)−sec(x)tan(x))
=(sec2(x)+tan2(x)+sec(x)tan(x))(sec2(x)+tan2(x)−sec(x)tan(x))
(sec2(x)+tan2(x)+sec(x)tan(x))(sec2(x)+tan2(x)−sec(x)tan(x))=0
Resolver cada parte por separadosec2(x)+tan2(x)+sec(x)tan(x)=0orsec2(x)+tan2(x)−sec(x)tan(x)=0
sec2(x)+tan2(x)+sec(x)tan(x)=0:Sin solución
sec2(x)+tan2(x)+sec(x)tan(x)=0
Expresar con seno, coseno
sec2(x)+tan2(x)+sec(x)tan(x)
Utilizar la identidad trigonométrica básica: sec(x)=cos(x)1​=(cos(x)1​)2+tan2(x)+cos(x)1​tan(x)
Utilizar la identidad trigonométrica básica: tan(x)=cos(x)sin(x)​=(cos(x)1​)2+(cos(x)sin(x)​)2+cos(x)1​⋅cos(x)sin(x)​
Simplificar (cos(x)1​)2+(cos(x)sin(x)​)2+cos(x)1​⋅cos(x)sin(x)​:cos2(x)1+sin2(x)+sin(x)​
(cos(x)1​)2+(cos(x)sin(x)​)2+cos(x)1​⋅cos(x)sin(x)​
(cos(x)1​)2=cos2(x)1​
(cos(x)1​)2
Aplicar las leyes de los exponentes: (ba​)c=bcac​=cos2(x)12​
Aplicar la regla 1a=112=1=cos2(x)1​
(cos(x)sin(x)​)2=cos2(x)sin2(x)​
(cos(x)sin(x)​)2
Aplicar las leyes de los exponentes: (ba​)c=bcac​=cos2(x)sin2(x)​
cos(x)1​⋅cos(x)sin(x)​=cos2(x)sin(x)​
cos(x)1​⋅cos(x)sin(x)​
Multiplicar fracciones: ba​⋅dc​=b⋅da⋅c​=cos(x)cos(x)1⋅sin(x)​
Multiplicar: 1⋅sin(x)=sin(x)=cos(x)cos(x)sin(x)​
cos(x)cos(x)=cos2(x)
cos(x)cos(x)
Aplicar las leyes de los exponentes: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=cos1+1(x)
Sumar: 1+1=2=cos2(x)
=cos2(x)sin(x)​
=cos2(x)1​+cos2(x)sin2(x)​+cos2(x)sin(x)​
Aplicar la regla ca​±cb​=ca±b​=cos2(x)1+sin2(x)+sin(x)​
=cos2(x)1+sin2(x)+sin(x)​
cos2(x)1+sin(x)+sin2(x)​=0
g(x)f(x)​=0⇒f(x)=01+sin(x)+sin2(x)=0
Usando el método de sustitución
1+sin(x)+sin2(x)=0
Sea: sin(x)=u1+u+u2=0
1+u+u2=0:u=−21​+i23​​,u=−21​−i23​​
1+u+u2=0
Escribir en la forma binómica ax2+bx+c=0u2+u+1=0
Resolver con la fórmula general para ecuaciones de segundo grado:
u2+u+1=0
Formula general para ecuaciones de segundo grado:
Para a=1,b=1,c=1u1,2​=2⋅1−1±12−4⋅1⋅1​​
u1,2​=2⋅1−1±12−4⋅1⋅1​​
Simplificar 12−4⋅1⋅1​:3​i
12−4⋅1⋅1​
Aplicar la regla 1a=112=1=1−4⋅1⋅1​
Multiplicar los numeros: 4⋅1⋅1=4=1−4​
Restar: 1−4=−3=−3​
Aplicar las leyes de los exponentes: −a​=−1​a​−3​=−1​3​=−1​3​
Aplicar las propiedades de los numeros imaginarios: −1​=i=3​i
u1,2​=2⋅1−1±3​i​
Separar las solucionesu1​=2⋅1−1+3​i​,u2​=2⋅1−1−3​i​
u=2⋅1−1+3​i​:−21​+i23​​
2⋅1−1+3​i​
Multiplicar los numeros: 2⋅1=2=2−1+3​i​
Reescribir 2−1+3​i​ en la forma binómica: −21​+23​​i
2−1+3​i​
Aplicar las propiedades de las fracciones: ca±b​=ca​±cb​2−1+3​i​=−21​+23​i​=−21​+23​i​
=−21​+23​​i
u=2⋅1−1−3​i​:−21​−i23​​
2⋅1−1−3​i​
Multiplicar los numeros: 2⋅1=2=2−1−3​i​
Reescribir 2−1−3​i​ en la forma binómica: −21​−23​​i
2−1−3​i​
Aplicar las propiedades de las fracciones: ca±b​=ca​±cb​2−1−3​i​=−21​−23​i​=−21​−23​i​
=−21​−23​​i
Las soluciones a la ecuación de segundo grado son: u=−21​+i23​​,u=−21​−i23​​
Sustituir en la ecuación u=sin(x)sin(x)=−21​+i23​​,sin(x)=−21​−i23​​
sin(x)=−21​+i23​​,sin(x)=−21​−i23​​
sin(x)=−21​+i23​​:Sin solución
sin(x)=−21​+i23​​
Sinsolucioˊn
sin(x)=−21​−i23​​:Sin solución
sin(x)=−21​−i23​​
Sinsolucioˊn
Combinar toda las solucionesSinsolucioˊn
sec2(x)+tan2(x)−sec(x)tan(x)=0:Sin solución
sec2(x)+tan2(x)−sec(x)tan(x)=0
Expresar con seno, coseno
sec2(x)+tan2(x)−sec(x)tan(x)
Utilizar la identidad trigonométrica básica: sec(x)=cos(x)1​=(cos(x)1​)2+tan2(x)−cos(x)1​tan(x)
Utilizar la identidad trigonométrica básica: tan(x)=cos(x)sin(x)​=(cos(x)1​)2+(cos(x)sin(x)​)2−cos(x)1​⋅cos(x)sin(x)​
Simplificar (cos(x)1​)2+(cos(x)sin(x)​)2−cos(x)1​⋅cos(x)sin(x)​:cos2(x)1+sin2(x)−sin(x)​
(cos(x)1​)2+(cos(x)sin(x)​)2−cos(x)1​⋅cos(x)sin(x)​
(cos(x)1​)2=cos2(x)1​
(cos(x)1​)2
Aplicar las leyes de los exponentes: (ba​)c=bcac​=cos2(x)12​
Aplicar la regla 1a=112=1=cos2(x)1​
(cos(x)sin(x)​)2=cos2(x)sin2(x)​
(cos(x)sin(x)​)2
Aplicar las leyes de los exponentes: (ba​)c=bcac​=cos2(x)sin2(x)​
cos(x)1​⋅cos(x)sin(x)​=cos2(x)sin(x)​
cos(x)1​⋅cos(x)sin(x)​
Multiplicar fracciones: ba​⋅dc​=b⋅da⋅c​=cos(x)cos(x)1⋅sin(x)​
Multiplicar: 1⋅sin(x)=sin(x)=cos(x)cos(x)sin(x)​
cos(x)cos(x)=cos2(x)
cos(x)cos(x)
Aplicar las leyes de los exponentes: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=cos1+1(x)
Sumar: 1+1=2=cos2(x)
=cos2(x)sin(x)​
=cos2(x)1​+cos2(x)sin2(x)​−cos2(x)sin(x)​
Aplicar la regla ca​±cb​=ca±b​=cos2(x)1+sin2(x)−sin(x)​
=cos2(x)1+sin2(x)−sin(x)​
cos2(x)1−sin(x)+sin2(x)​=0
g(x)f(x)​=0⇒f(x)=01−sin(x)+sin2(x)=0
Usando el método de sustitución
1−sin(x)+sin2(x)=0
Sea: sin(x)=u1−u+u2=0
1−u+u2=0:u=21​+i23​​,u=21​−i23​​
1−u+u2=0
Escribir en la forma binómica ax2+bx+c=0u2−u+1=0
Resolver con la fórmula general para ecuaciones de segundo grado:
u2−u+1=0
Formula general para ecuaciones de segundo grado:
Para a=1,b=−1,c=1u1,2​=2⋅1−(−1)±(−1)2−4⋅1⋅1​​
u1,2​=2⋅1−(−1)±(−1)2−4⋅1⋅1​​
Simplificar (−1)2−4⋅1⋅1​:3​i
(−1)2−4⋅1⋅1​
(−1)2=1
(−1)2
Aplicar las leyes de los exponentes: (−a)n=an,si n es par(−1)2=12=12
Aplicar la regla 1a=1=1
4⋅1⋅1=4
4⋅1⋅1
Multiplicar los numeros: 4⋅1⋅1=4=4
=1−4​
Restar: 1−4=−3=−3​
Aplicar las leyes de los exponentes: −a​=−1​a​−3​=−1​3​=−1​3​
Aplicar las propiedades de los numeros imaginarios: −1​=i=3​i
u1,2​=2⋅1−(−1)±3​i​
Separar las solucionesu1​=2⋅1−(−1)+3​i​,u2​=2⋅1−(−1)−3​i​
u=2⋅1−(−1)+3​i​:21​+i23​​
2⋅1−(−1)+3​i​
Aplicar la regla −(−a)=a=2⋅11+3​i​
Multiplicar los numeros: 2⋅1=2=21+3​i​
Reescribir 21+3​i​ en la forma binómica: 21​+23​​i
21+3​i​
Aplicar las propiedades de las fracciones: ca±b​=ca​±cb​21+3​i​=21​+23​i​=21​+23​i​
=21​+23​​i
u=2⋅1−(−1)−3​i​:21​−i23​​
2⋅1−(−1)−3​i​
Aplicar la regla −(−a)=a=2⋅11−3​i​
Multiplicar los numeros: 2⋅1=2=21−3​i​
Reescribir 21−3​i​ en la forma binómica: 21​−23​​i
21−3​i​
Aplicar las propiedades de las fracciones: ca±b​=ca​±cb​21−3​i​=21​−23​i​=21​−23​i​
=21​−23​​i
Las soluciones a la ecuación de segundo grado son: u=21​+i23​​,u=21​−i23​​
Sustituir en la ecuación u=sin(x)sin(x)=21​+i23​​,sin(x)=21​−i23​​
sin(x)=21​+i23​​,sin(x)=21​−i23​​
sin(x)=21​+i23​​:Sin solución
sin(x)=21​+i23​​
Sinsolucioˊn
sin(x)=21​−i23​​:Sin solución
sin(x)=21​−i23​​
Sinsolucioˊn
Combinar toda las solucionesSinsolucioˊn
Combinar toda las solucionesSinsolucioˊnparax∈R

Gráfica

Sorry, your browser does not support this application
Ver gráfico interactivo

Ejemplos populares

cos^2(2x)-2sin^2(x)-1=0cos^2(x)+2=sin(x)-sin(2x)-3cos(x)=0solvefor x,y=3cos(fxx+pi/2)+5sin(x)cos(x)=sin(x),0<x<= 2pi
Herramientas de estudioSolucionador Matemático de IAProblemas popularesHojas de trabajoPracticaHojas de referenciaCalculadorasCalculadora gráficaCalculadora de GeometríaVerificar solución
AplicacionesAplicación Symbolab (Android)Calculadora gráfica (Android)Practica (Android)Aplicación Symbolab (iOS)Calculadora gráfica (iOS)Practica (iOS)Extensión de ChromeSymbolab Math Solver API
EmpresaAcerca de SymbolabBlogAyuda
LegalPrivacidadTérminosPolítica de cookiesConfiguración de CookiesNo vendas ni compartas mi información personalCopyright, Guías Comunitarias, DSA & otros recursos legalesCentro Legal de Learneo
Redes sociales
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024