Soluciones
Calculadora de integrales (antiderivadas)Calculadora de derivadasCalculadora de ÁlgebraCalculadora de matricesMás...
Gráficos
Gráfica de líneaGráfica exponencialGráfica cuadráticaGráfico de senoMás...
Calculadoras
Calculadora de IMCCalculadora de interés compuestoCalculadora de porcentajeCalculadora de aceleraciónMás...
Geometría
Calculadora del teorema de pitágorasCalculadora del área del círculoCalculadora de triángulo isóscelesCalculadora de TriángulosMás...
Herramientas
CuadernoGruposHojas de referenciaHojas de trabajoPracticaVerificar
es
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometría >

sin^3(x)+sin(x)=2sin^{22}(x)

  • Pre-Álgebra
  • Álgebra
  • Precálculo
  • Cálculo
  • Funciones
  • Álgebra Lineal
  • Trigonometría
  • Estadística
  • Química
  • Economía
  • Conversiones

Solución

sin3(x)+sin(x)=2sin22(x)

Solución

x=2πn,x=π+2πn,x=2π​+2πn
+1
Grados
x=0∘+360∘n,x=180∘+360∘n,x=90∘+360∘n
Pasos de solución
sin3(x)+sin(x)=2sin22(x)
Usando el método de sustitución
sin3(x)+sin(x)=2sin22(x)
Sea: sin(x)=uu3+u=2u22
u3+u=2u22:u=0,u=1
u3+u=2u22
Intercambiar lados2u22=u3+u
Desplace ua la izquierda
2u22=u3+u
Restar u de ambos lados2u22−u=u3+u−u
Simplificar2u22−u=u3
2u22−u=u3
Desplace u3a la izquierda
2u22−u=u3
Restar u3 de ambos lados2u22−u−u3=u3−u3
Simplificar2u22−u−u3=0
2u22−u−u3=0
Factorizar 2u22−u−u3:u(u−1)(2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+2u3+2u2+u+1)
2u22−u−u3
Factorizar el termino común u:u(2u21−u2−1)
2u22−u3−u
Aplicar las leyes de los exponentes: ab+c=abacu3=u2u=2u21u−u2u−u
Factorizar el termino común u=u(2u21−u2−1)
=u(2u21−u2−1)
Factorizar 2u21−u2−1:(u−1)(2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+2u3+2u2+u+1)
2u21−u2−1
Utilizar el teorema de la raíz racional
a0​=1,an​=2
Los divisores de a0​:1,Los divisores de an​:1,2
Por lo tanto, verificar los siguientes numeros racionales:±1,21​
11​ es la raíz de la expresión, por lo tanto, factorizar u−1
=(u−1)u−12u21−u2−1​
u−12u21−u2−1​=2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+2u3+2u2+u+1
u−12u21−u2−1​
Dividir u−12u21−u2−1​:u−12u21−u2−1​=2u20+u−12u20−u2−1​
Dividir los coeficientes de los términos de mayor grado del numerador 2u21−u2−1
y el divisor u−1:u2u21​=2u20
Cociente=2u20
Multiplicar u−1 por 2u20:2u21−2u20Substraer 2u21−2u20 de 2u21−u2−1 para obtener un nuevo residuoResiduo=2u20−u2−1
Por lo tantou−12u21−u2−1​=2u20+u−12u20−u2−1​
=2u20+u−12u20−u2−1​
Dividir u−12u20−u2−1​:u−12u20−u2−1​=2u19+u−12u19−u2−1​
Dividir los coeficientes de los términos de mayor grado del numerador 2u20−u2−1
y el divisor u−1:u2u20​=2u19
Cociente=2u19
Multiplicar u−1 por 2u19:2u20−2u19Substraer 2u20−2u19 de 2u20−u2−1 para obtener un nuevo residuoResiduo=2u19−u2−1
Por lo tantou−12u20−u2−1​=2u19+u−12u19−u2−1​
=2u20+2u19+u−12u19−u2−1​
Dividir u−12u19−u2−1​:u−12u19−u2−1​=2u18+u−12u18−u2−1​
Dividir los coeficientes de los términos de mayor grado del numerador 2u19−u2−1
y el divisor u−1:u2u19​=2u18
Cociente=2u18
Multiplicar u−1 por 2u18:2u19−2u18Substraer 2u19−2u18 de 2u19−u2−1 para obtener un nuevo residuoResiduo=2u18−u2−1
Por lo tantou−12u19−u2−1​=2u18+u−12u18−u2−1​
=2u20+2u19+2u18+u−12u18−u2−1​
Dividir u−12u18−u2−1​:u−12u18−u2−1​=2u17+u−12u17−u2−1​
Dividir los coeficientes de los términos de mayor grado del numerador 2u18−u2−1
y el divisor u−1:u2u18​=2u17
Cociente=2u17
Multiplicar u−1 por 2u17:2u18−2u17Substraer 2u18−2u17 de 2u18−u2−1 para obtener un nuevo residuoResiduo=2u17−u2−1
Por lo tantou−12u18−u2−1​=2u17+u−12u17−u2−1​
=2u20+2u19+2u18+2u17+u−12u17−u2−1​
Dividir u−12u17−u2−1​:u−12u17−u2−1​=2u16+u−12u16−u2−1​
Dividir los coeficientes de los términos de mayor grado del numerador 2u17−u2−1
y el divisor u−1:u2u17​=2u16
Cociente=2u16
Multiplicar u−1 por 2u16:2u17−2u16Substraer 2u17−2u16 de 2u17−u2−1 para obtener un nuevo residuoResiduo=2u16−u2−1
Por lo tantou−12u17−u2−1​=2u16+u−12u16−u2−1​
=2u20+2u19+2u18+2u17+2u16+u−12u16−u2−1​
Dividir u−12u16−u2−1​:u−12u16−u2−1​=2u15+u−12u15−u2−1​
Dividir los coeficientes de los términos de mayor grado del numerador 2u16−u2−1
y el divisor u−1:u2u16​=2u15
Cociente=2u15
Multiplicar u−1 por 2u15:2u16−2u15Substraer 2u16−2u15 de 2u16−u2−1 para obtener un nuevo residuoResiduo=2u15−u2−1
Por lo tantou−12u16−u2−1​=2u15+u−12u15−u2−1​
=2u20+2u19+2u18+2u17+2u16+2u15+u−12u15−u2−1​
Dividir u−12u15−u2−1​:u−12u15−u2−1​=2u14+u−12u14−u2−1​
Dividir los coeficientes de los términos de mayor grado del numerador 2u15−u2−1
y el divisor u−1:u2u15​=2u14
Cociente=2u14
Multiplicar u−1 por 2u14:2u15−2u14Substraer 2u15−2u14 de 2u15−u2−1 para obtener un nuevo residuoResiduo=2u14−u2−1
Por lo tantou−12u15−u2−1​=2u14+u−12u14−u2−1​
=2u20+2u19+2u18+2u17+2u16+2u15+2u14+u−12u14−u2−1​
Dividir u−12u14−u2−1​:u−12u14−u2−1​=2u13+u−12u13−u2−1​
Dividir los coeficientes de los términos de mayor grado del numerador 2u14−u2−1
y el divisor u−1:u2u14​=2u13
Cociente=2u13
Multiplicar u−1 por 2u13:2u14−2u13Substraer 2u14−2u13 de 2u14−u2−1 para obtener un nuevo residuoResiduo=2u13−u2−1
Por lo tantou−12u14−u2−1​=2u13+u−12u13−u2−1​
=2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+u−12u13−u2−1​
Dividir u−12u13−u2−1​:u−12u13−u2−1​=2u12+u−12u12−u2−1​
Dividir los coeficientes de los términos de mayor grado del numerador 2u13−u2−1
y el divisor u−1:u2u13​=2u12
Cociente=2u12
Multiplicar u−1 por 2u12:2u13−2u12Substraer 2u13−2u12 de 2u13−u2−1 para obtener un nuevo residuoResiduo=2u12−u2−1
Por lo tantou−12u13−u2−1​=2u12+u−12u12−u2−1​
=2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+u−12u12−u2−1​
Dividir u−12u12−u2−1​:u−12u12−u2−1​=2u11+u−12u11−u2−1​
Dividir los coeficientes de los términos de mayor grado del numerador 2u12−u2−1
y el divisor u−1:u2u12​=2u11
Cociente=2u11
Multiplicar u−1 por 2u11:2u12−2u11Substraer 2u12−2u11 de 2u12−u2−1 para obtener un nuevo residuoResiduo=2u11−u2−1
Por lo tantou−12u12−u2−1​=2u11+u−12u11−u2−1​
=2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+u−12u11−u2−1​
Dividir u−12u11−u2−1​:u−12u11−u2−1​=2u10+u−12u10−u2−1​
Dividir los coeficientes de los términos de mayor grado del numerador 2u11−u2−1
y el divisor u−1:u2u11​=2u10
Cociente=2u10
Multiplicar u−1 por 2u10:2u11−2u10Substraer 2u11−2u10 de 2u11−u2−1 para obtener un nuevo residuoResiduo=2u10−u2−1
Por lo tantou−12u11−u2−1​=2u10+u−12u10−u2−1​
=2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+u−12u10−u2−1​
Dividir u−12u10−u2−1​:u−12u10−u2−1​=2u9+u−12u9−u2−1​
Dividir los coeficientes de los términos de mayor grado del numerador 2u10−u2−1
y el divisor u−1:u2u10​=2u9
Cociente=2u9
Multiplicar u−1 por 2u9:2u10−2u9Substraer 2u10−2u9 de 2u10−u2−1 para obtener un nuevo residuoResiduo=2u9−u2−1
Por lo tantou−12u10−u2−1​=2u9+u−12u9−u2−1​
=2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+u−12u9−u2−1​
Dividir u−12u9−u2−1​:u−12u9−u2−1​=2u8+u−12u8−u2−1​
Dividir los coeficientes de los términos de mayor grado del numerador 2u9−u2−1
y el divisor u−1:u2u9​=2u8
Cociente=2u8
Multiplicar u−1 por 2u8:2u9−2u8Substraer 2u9−2u8 de 2u9−u2−1 para obtener un nuevo residuoResiduo=2u8−u2−1
Por lo tantou−12u9−u2−1​=2u8+u−12u8−u2−1​
=2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+u−12u8−u2−1​
Dividir u−12u8−u2−1​:u−12u8−u2−1​=2u7+u−12u7−u2−1​
Dividir los coeficientes de los términos de mayor grado del numerador 2u8−u2−1
y el divisor u−1:u2u8​=2u7
Cociente=2u7
Multiplicar u−1 por 2u7:2u8−2u7Substraer 2u8−2u7 de 2u8−u2−1 para obtener un nuevo residuoResiduo=2u7−u2−1
Por lo tantou−12u8−u2−1​=2u7+u−12u7−u2−1​
=2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+u−12u7−u2−1​
Dividir u−12u7−u2−1​:u−12u7−u2−1​=2u6+u−12u6−u2−1​
Dividir los coeficientes de los términos de mayor grado del numerador 2u7−u2−1
y el divisor u−1:u2u7​=2u6
Cociente=2u6
Multiplicar u−1 por 2u6:2u7−2u6Substraer 2u7−2u6 de 2u7−u2−1 para obtener un nuevo residuoResiduo=2u6−u2−1
Por lo tantou−12u7−u2−1​=2u6+u−12u6−u2−1​
=2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+u−12u6−u2−1​
Dividir u−12u6−u2−1​:u−12u6−u2−1​=2u5+u−12u5−u2−1​
Dividir los coeficientes de los términos de mayor grado del numerador 2u6−u2−1
y el divisor u−1:u2u6​=2u5
Cociente=2u5
Multiplicar u−1 por 2u5:2u6−2u5Substraer 2u6−2u5 de 2u6−u2−1 para obtener un nuevo residuoResiduo=2u5−u2−1
Por lo tantou−12u6−u2−1​=2u5+u−12u5−u2−1​
=2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+u−12u5−u2−1​
Dividir u−12u5−u2−1​:u−12u5−u2−1​=2u4+u−12u4−u2−1​
Dividir los coeficientes de los términos de mayor grado del numerador 2u5−u2−1
y el divisor u−1:u2u5​=2u4
Cociente=2u4
Multiplicar u−1 por 2u4:2u5−2u4Substraer 2u5−2u4 de 2u5−u2−1 para obtener un nuevo residuoResiduo=2u4−u2−1
Por lo tantou−12u5−u2−1​=2u4+u−12u4−u2−1​
=2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+u−12u4−u2−1​
Dividir u−12u4−u2−1​:u−12u4−u2−1​=2u3+u−12u3−u2−1​
Dividir los coeficientes de los términos de mayor grado del numerador 2u4−u2−1
y el divisor u−1:u2u4​=2u3
Cociente=2u3
Multiplicar u−1 por 2u3:2u4−2u3Substraer 2u4−2u3 de 2u4−u2−1 para obtener un nuevo residuoResiduo=2u3−u2−1
Por lo tantou−12u4−u2−1​=2u3+u−12u3−u2−1​
=2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+2u3+u−12u3−u2−1​
Dividir u−12u3−u2−1​:u−12u3−u2−1​=2u2+u−1u2−1​
Dividir los coeficientes de los términos de mayor grado del numerador 2u3−u2−1
y el divisor u−1:u2u3​=2u2
Cociente=2u2
Multiplicar u−1 por 2u2:2u3−2u2Substraer 2u3−2u2 de 2u3−u2−1 para obtener un nuevo residuoResiduo=u2−1
Por lo tantou−12u3−u2−1​=2u2+u−1u2−1​
=2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+2u3+2u2+u−1u2−1​
Dividir u−1u2−1​:u−1u2−1​=u+u−1u−1​
Dividir los coeficientes de los términos de mayor grado del numerador u2−1
y el divisor u−1:uu2​=u
Cociente=u
Multiplicar u−1 por u:u2−uSubstraer u2−u de u2−1 para obtener un nuevo residuoResiduo=u−1
Por lo tantou−1u2−1​=u+u−1u−1​
=2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+2u3+2u2+u+u−1u−1​
Dividir u−1u−1​:u−1u−1​=1
Dividir los coeficientes de los términos de mayor grado del numerador u−1
y el divisor u−1:uu​=1
Cociente=1
Multiplicar u−1 por 1:u−1Substraer u−1 de u−1 para obtener un nuevo residuoResiduo=0
Por lo tantou−1u−1​=1
=2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+2u3+2u2+u+1
=2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+2u3+2u2+u+1
=(u−1)(2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+2u3+2u2+u+1)
=u(u−1)(2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+2u3+2u2+u+1)
u(u−1)(2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+2u3+2u2+u+1)=0
Usando la propiedad del factor cero: Si ab=0entonces a=0o b=0u=0oru−1=0or2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+2u3+2u2+u+1=0
Resolver u−1=0:u=1
u−1=0
Desplace 1a la derecha
u−1=0
Sumar 1 a ambos ladosu−1+1=0+1
Simplificaru=1
u=1
Resolver 2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+2u3+2u2+u+1=0:Sin solución para u∈R
2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+2u3+2u2+u+1=0
Encontrar una solución para 2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+2u3+2u2+u+1=0 utilizando el método de Newton-Raphson:Sin solución para u∈R
2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+2u3+2u2+u+1=0
Definición del método de Newton-Raphson
f(u)=2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+2u3+2u2+u+1
Hallar f′(u):40u19+38u18+36u17+34u16+32u15+30u14+28u13+26u12+24u11+22u10+20u9+18u8+16u7+14u6+12u5+10u4+8u3+6u2+4u+1
dud​(2u20+2u19+2u18+2u17+2u16+2u15+2u14+2u13+2u12+2u11+2u10+2u9+2u8+2u7+2u6+2u5+2u4+2u3+2u2+u+1)
Aplicar la regla de la suma/diferencia: (f±g)′=f′±g′=dud​(2u20)+dud​(2u19)+dud​(2u18)+dud​(2u17)+dud​(2u16)+dud​(2u15)+dud​(2u14)+dud​(2u13)+dud​(2u12)+dud​(2u11)+dud​(2u10)+dud​(2u9)+dud​(2u8)+dud​(2u7)+dud​(2u6)+dud​(2u5)+dud​(2u4)+dud​(2u3)+dud​(2u2)+dudu​+dud​(1)
dud​(2u20)=40u19
dud​(2u20)
Sacar la constante: (a⋅f)′=a⋅f′=2dud​(u20)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=2⋅20u20−1
Simplificar=40u19
dud​(2u19)=38u18
dud​(2u19)
Sacar la constante: (a⋅f)′=a⋅f′=2dud​(u19)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=2⋅19u19−1
Simplificar=38u18
dud​(2u18)=36u17
dud​(2u18)
Sacar la constante: (a⋅f)′=a⋅f′=2dud​(u18)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=2⋅18u18−1
Simplificar=36u17
dud​(2u17)=34u16
dud​(2u17)
Sacar la constante: (a⋅f)′=a⋅f′=2dud​(u17)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=2⋅17u17−1
Simplificar=34u16
dud​(2u16)=32u15
dud​(2u16)
Sacar la constante: (a⋅f)′=a⋅f′=2dud​(u16)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=2⋅16u16−1
Simplificar=32u15
dud​(2u15)=30u14
dud​(2u15)
Sacar la constante: (a⋅f)′=a⋅f′=2dud​(u15)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=2⋅15u15−1
Simplificar=30u14
dud​(2u14)=28u13
dud​(2u14)
Sacar la constante: (a⋅f)′=a⋅f′=2dud​(u14)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=2⋅14u14−1
Simplificar=28u13
dud​(2u13)=26u12
dud​(2u13)
Sacar la constante: (a⋅f)′=a⋅f′=2dud​(u13)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=2⋅13u13−1
Simplificar=26u12
dud​(2u12)=24u11
dud​(2u12)
Sacar la constante: (a⋅f)′=a⋅f′=2dud​(u12)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=2⋅12u12−1
Simplificar=24u11
dud​(2u11)=22u10
dud​(2u11)
Sacar la constante: (a⋅f)′=a⋅f′=2dud​(u11)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=2⋅11u11−1
Simplificar=22u10
dud​(2u10)=20u9
dud​(2u10)
Sacar la constante: (a⋅f)′=a⋅f′=2dud​(u10)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=2⋅10u10−1
Simplificar=20u9
dud​(2u9)=18u8
dud​(2u9)
Sacar la constante: (a⋅f)′=a⋅f′=2dud​(u9)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=2⋅9u9−1
Simplificar=18u8
dud​(2u8)=16u7
dud​(2u8)
Sacar la constante: (a⋅f)′=a⋅f′=2dud​(u8)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=2⋅8u8−1
Simplificar=16u7
dud​(2u7)=14u6
dud​(2u7)
Sacar la constante: (a⋅f)′=a⋅f′=2dud​(u7)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=2⋅7u7−1
Simplificar=14u6
dud​(2u6)=12u5
dud​(2u6)
Sacar la constante: (a⋅f)′=a⋅f′=2dud​(u6)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=2⋅6u6−1
Simplificar=12u5
dud​(2u5)=10u4
dud​(2u5)
Sacar la constante: (a⋅f)′=a⋅f′=2dud​(u5)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=2⋅5u5−1
Simplificar=10u4
dud​(2u4)=8u3
dud​(2u4)
Sacar la constante: (a⋅f)′=a⋅f′=2dud​(u4)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=2⋅4u4−1
Simplificar=8u3
dud​(2u3)=6u2
dud​(2u3)
Sacar la constante: (a⋅f)′=a⋅f′=2dud​(u3)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=2⋅3u3−1
Simplificar=6u2
dud​(2u2)=4u
dud​(2u2)
Sacar la constante: (a⋅f)′=a⋅f′=2dud​(u2)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=2⋅2u2−1
Simplificar=4u
dudu​=1
dudu​
Aplicar la regla de derivación: dudu​=1=1
dud​(1)=0
dud​(1)
Derivada de una constante: dxd​(a)=0=0
=40u19+38u18+36u17+34u16+32u15+30u14+28u13+26u12+24u11+22u10+20u9+18u8+16u7+14u6+12u5+10u4+8u3+6u2+4u+1+0
Simplificar=40u19+38u18+36u17+34u16+32u15+30u14+28u13+26u12+24u11+22u10+20u9+18u8+16u7+14u6+12u5+10u4+8u3+6u2+4u+1
Sea u0​=−1Calcular un+1​ hasta que Δun+1​<0.000001
u1​=−0.90476…:Δu1​=0.09523…
f(u0​)=2(−1)20+2(−1)19+2(−1)18+2(−1)17+2(−1)16+2(−1)15+2(−1)14+2(−1)13+2(−1)12+2(−1)11+2(−1)10+2(−1)9+2(−1)8+2(−1)7+2(−1)6+2(−1)5+2(−1)4+2(−1)3+2(−1)2+(−1)+1=2f′(u0​)=40(−1)19+38(−1)18+36(−1)17+34(−1)16+32(−1)15+30(−1)14+28(−1)13+26(−1)12+24(−1)11+22(−1)10+20(−1)9+18(−1)8+16(−1)7+14(−1)6+12(−1)5+10(−1)4+8(−1)3+6(−1)2+4(−1)+1=−21u1​=−0.90476…
Δu1​=∣−0.90476…−(−1)∣=0.09523…Δu1​=0.09523…
u2​=−0.58245…:Δu2​=0.32230…
f(u1​)=2(−0.90476…)20+2(−0.90476…)19+2(−0.90476…)18+2(−0.90476…)17+2(−0.90476…)16+2(−0.90476…)15+2(−0.90476…)14+2(−0.90476…)13+2(−0.90476…)12+2(−0.90476…)11+2(−0.90476…)10+2(−0.90476…)9+2(−0.90476…)8+2(−0.90476…)7+2(−0.90476…)6+2(−0.90476…)5+2(−0.90476…)4+2(−0.90476…)3+2(−0.90476…)2+(−0.90476…)+1=1.08311…f′(u1​)=40(−0.90476…)19+38(−0.90476…)18+36(−0.90476…)17+34(−0.90476…)16+32(−0.90476…)15+30(−0.90476…)14+28(−0.90476…)13+26(−0.90476…)12+24(−0.90476…)11+22(−0.90476…)10+20(−0.90476…)9+18(−0.90476…)8+16(−0.90476…)7+14(−0.90476…)6+12(−0.90476…)5+10(−0.90476…)4+8(−0.90476…)3+6(−0.90476…)2+4(−0.90476…)+1=−3.36053…u2​=−0.58245…
Δu2​=∣−0.58245…−(−0.90476…)∣=0.32230…Δu2​=0.32230…
u3​=3.61022…:Δu3​=4.19268…
f(u2​)=2(−0.58245…)20+2(−0.58245…)19+2(−0.58245…)18+2(−0.58245…)17+2(−0.58245…)16+2(−0.58245…)15+2(−0.58245…)14+2(−0.58245…)13+2(−0.58245…)12+2(−0.58245…)11+2(−0.58245…)10+2(−0.58245…)9+2(−0.58245…)8+2(−0.58245…)7+2(−0.58245…)6+2(−0.58245…)5+2(−0.58245…)4+2(−0.58245…)3+2(−0.58245…)2+(−0.58245…)+1=0.84632…f′(u2​)=40(−0.58245…)19+38(−0.58245…)18+36(−0.58245…)17+34(−0.58245…)16+32(−0.58245…)15+30(−0.58245…)14+28(−0.58245…)13+26(−0.58245…)12+24(−0.58245…)11+22(−0.58245…)10+20(−0.58245…)9+18(−0.58245…)8+16(−0.58245…)7+14(−0.58245…)6+12(−0.58245…)5+10(−0.58245…)4+8(−0.58245…)3+6(−0.58245…)2+4(−0.58245…)+1=−0.20185…u3​=3.61022…
Δu3​=∣3.61022…−(−0.58245…)∣=4.19268…Δu3​=4.19268…
u4​=3.42618…:Δu4​=0.18403…
f(u3​)=2⋅3.61022…20+2⋅3.61022…19+2⋅3.61022…18+2⋅3.61022…17+2⋅3.61022…16+2⋅3.61022…15+2⋅3.61022…14+2⋅3.61022…13+2⋅3.61022…12+2⋅3.61022…11+2⋅3.61022…10+2⋅3.61022…9+2⋅3.61022…8+2⋅3.61022…7+2⋅3.61022…6+2⋅3.61022…5+2⋅3.61022…4+2⋅3.61022…3+2⋅3.61022…2+3.61022…+1=391356105797.3665f′(u3​)=40⋅3.61022…19+38⋅3.61022…18+36⋅3.61022…17+34⋅3.61022…16+32⋅3.61022…15+30⋅3.61022…14+28⋅3.61022…13+26⋅3.61022…12+24⋅3.61022…11+22⋅3.61022…10+20⋅3.61022…9+18⋅3.61022…8+16⋅3.61022…7+14⋅3.61022…6+12⋅3.61022…5+10⋅3.61022…4+8⋅3.61022…3+6⋅3.61022…2+4⋅3.61022…+1=2126512839249.2053u4​=3.42618…
Δu4​=∣3.42618…−3.61022…∣=0.18403…Δu4​=0.18403…
u5​=3.25127…:Δu5​=0.17491…
f(u4​)=2⋅3.42618…20+2⋅3.42618…19+2⋅3.42618…18+2⋅3.42618…17+2⋅3.42618…16+2⋅3.42618…15+2⋅3.42618…14+2⋅3.42618…13+2⋅3.42618…12+2⋅3.42618…11+2⋅3.42618…10+2⋅3.42618…9+2⋅3.42618…8+2⋅3.42618…7+2⋅3.42618…6+2⋅3.42618…5+2⋅3.42618…4+2⋅3.42618…3+2⋅3.42618…2+3.42618…+1=140327262334.09973f′(u4​)=40⋅3.42618…19+38⋅3.42618…18+36⋅3.42618…17+34⋅3.42618…16+32⋅3.42618…15+30⋅3.42618…14+28⋅3.42618…13+26⋅3.42618…12+24⋅3.42618…11+22⋅3.42618…10+20⋅3.42618…9+18⋅3.42618…8+16⋅3.42618…7+14⋅3.42618…6+12⋅3.42618…5+10⋅3.42618…4+8⋅3.42618…3+6⋅3.42618…2+4⋅3.42618…+1=802263679492.2867u5​=3.25127…
Δu5​=∣3.25127…−3.42618…∣=0.17491…Δu5​=0.17491…
u6​=3.08501…:Δu6​=0.16625…
f(u5​)=2⋅3.25127…20+2⋅3.25127…19+2⋅3.25127…18+2⋅3.25127…17+2⋅3.25127…16+2⋅3.25127…15+2⋅3.25127…14+2⋅3.25127…13+2⋅3.25127…12+2⋅3.25127…11+2⋅3.25127…10+2⋅3.25127…9+2⋅3.25127…8+2⋅3.25127…7+2⋅3.25127…6+2⋅3.25127…5+2⋅3.25127…4+2⋅3.25127…3+2⋅3.25127…2+3.25127…+1=50318521009.06572f′(u5​)=40⋅3.25127…19+38⋅3.25127…18+36⋅3.25127…17+34⋅3.25127…16+32⋅3.25127…15+30⋅3.25127…14+28⋅3.25127…13+26⋅3.25127…12+24⋅3.25127…11+22⋅3.25127…10+20⋅3.25127…9+18⋅3.25127…8+16⋅3.25127…7+14⋅3.25127…6+12⋅3.25127…5+10⋅3.25127…4+8⋅3.25127…3+6⋅3.25127…2+4⋅3.25127…+1=302656481865.62994u6​=3.08501…
Δu6​=∣3.08501…−3.25127…∣=0.16625…Δu6​=0.16625…
u7​=2.92697…:Δu7​=0.15804…
f(u6​)=2⋅3.08501…20+2⋅3.08501…19+2⋅3.08501…18+2⋅3.08501…17+2⋅3.08501…16+2⋅3.08501…15+2⋅3.08501…14+2⋅3.08501…13+2⋅3.08501…12+2⋅3.08501…11+2⋅3.08501…10+2⋅3.08501…9+2⋅3.08501…8+2⋅3.08501…7+2⋅3.08501…6+2⋅3.08501…5+2⋅3.08501…4+2⋅3.08501…3+2⋅3.08501…2+3.08501…+1=18043992829.22628f′(u6​)=40⋅3.08501…19+38⋅3.08501…18+36⋅3.08501…17+34⋅3.08501…16+32⋅3.08501…15+30⋅3.08501…14+28⋅3.08501…13+26⋅3.08501…12+24⋅3.08501…11+22⋅3.08501…10+20⋅3.08501…9+18⋅3.08501…8+16⋅3.08501…7+14⋅3.08501…6+12⋅3.08501…5+10⋅3.08501…4+8⋅3.08501…3+6⋅3.08501…2+4⋅3.08501…+1=114172983680.20372u7​=2.92697…
Δu7​=∣2.92697…−3.08501…∣=0.15804…Δu7​=0.15804…
u8​=2.77673…:Δu8​=0.15024…
f(u7​)=2⋅2.92697…20+2⋅2.92697…19+2⋅2.92697…18+2⋅2.92697…17+2⋅2.92697…16+2⋅2.92697…15+2⋅2.92697…14+2⋅2.92697…13+2⋅2.92697…12+2⋅2.92697…11+2⋅2.92697…10+2⋅2.92697…9+2⋅2.92697…8+2⋅2.92697…7+2⋅2.92697…6+2⋅2.92697…5+2⋅2.92697…4+2⋅2.92697…3+2⋅2.92697…2+2.92697…+1=6470833347.00402f′(u7​)=40⋅2.92697…19+38⋅2.92697…18+36⋅2.92697…17+34⋅2.92697…16+32⋅2.92697…15+30⋅2.92697…14+28⋅2.92697…13+26⋅2.92697…12+24⋅2.92697…11+22⋅2.92697…10+20⋅2.92697…9+18⋅2.92697…8+16⋅2.92697…7+14⋅2.92697…6+12⋅2.92697…5+10⋅2.92697…4+8⋅2.92697…3+6⋅2.92697…2+4⋅2.92697…+1=43067856733.97665u8​=2.77673…
Δu8​=∣2.77673…−2.92697…∣=0.15024…Δu8​=0.15024…
u9​=2.63387…:Δu9​=0.14285…
f(u8​)=2⋅2.77673…20+2⋅2.77673…19+2⋅2.77673…18+2⋅2.77673…17+2⋅2.77673…16+2⋅2.77673…15+2⋅2.77673…14+2⋅2.77673…13+2⋅2.77673…12+2⋅2.77673…11+2⋅2.77673…10+2⋅2.77673…9+2⋅2.77673…8+2⋅2.77673…7+2⋅2.77673…6+2⋅2.77673…5+2⋅2.77673…4+2⋅2.77673…3+2⋅2.77673…2+2.77673…+1=2320680563.35344…f′(u8​)=40⋅2.77673…19+38⋅2.77673…18+36⋅2.77673…17+34⋅2.77673…16+32⋅2.77673…15+30⋅2.77673…14+28⋅2.77673…13+26⋅2.77673…12+24⋅2.77673…11+22⋅2.77673…10+20⋅2.77673…9+18⋅2.77673…8+16⋅2.77673…7+14⋅2.77673…6+12⋅2.77673…5+10⋅2.77673…4+8⋅2.77673…3+6⋅2.77673…2+4⋅2.77673…+1=16244812495.12528u9​=2.63387…
Δu9​=∣2.63387…−2.77673…∣=0.14285…Δu9​=0.14285…
u10​=2.49802…:Δu10​=0.13585…
f(u9​)=2⋅2.63387…20+2⋅2.63387…19+2⋅2.63387…18+2⋅2.63387…17+2⋅2.63387…16+2⋅2.63387…15+2⋅2.63387…14+2⋅2.63387…13+2⋅2.63387…12+2⋅2.63387…11+2⋅2.63387…10+2⋅2.63387…9+2⋅2.63387…8+2⋅2.63387…7+2⋅2.63387…6+2⋅2.63387…5+2⋅2.63387…4+2⋅2.63387…3+2⋅2.63387…2+2.63387…+1=832346488.77442…f′(u9​)=40⋅2.63387…19+38⋅2.63387…18+36⋅2.63387…17+34⋅2.63387…16+32⋅2.63387…15+30⋅2.63387…14+28⋅2.63387…13+26⋅2.63387…12+24⋅2.63387…11+22⋅2.63387…10+20⋅2.63387…9+18⋅2.63387…8+16⋅2.63387…7+14⋅2.63387…6+12⋅2.63387…5+10⋅2.63387…4+8⋅2.63387…3+6⋅2.63387…2+4⋅2.63387…+1=6126907579.45191…u10​=2.49802…
Δu10​=∣2.49802…−2.63387…∣=0.13585…Δu10​=0.13585…
u11​=2.36880…:Δu11​=0.12921…
f(u10​)=2⋅2.49802…20+2⋅2.49802…19+2⋅2.49802…18+2⋅2.49802…17+2⋅2.49802…16+2⋅2.49802…15+2⋅2.49802…14+2⋅2.49802…13+2⋅2.49802…12+2⋅2.49802…11+2⋅2.49802…10+2⋅2.49802…9+2⋅2.49802…8+2⋅2.49802…7+2⋅2.49802…6+2⋅2.49802…5+2⋅2.49802…4+2⋅2.49802…3+2⋅2.49802…2+2.49802…+1=298561855.74542…f′(u10​)=40⋅2.49802…19+38⋅2.49802…18+36⋅2.49802…17+34⋅2.49802…16+32⋅2.49802…15+30⋅2.49802…14+28⋅2.49802…13+26⋅2.49802…12+24⋅2.49802…11+22⋅2.49802…10+20⋅2.49802…9+18⋅2.49802…8+16⋅2.49802…7+14⋅2.49802…6+12⋅2.49802…5+10⋅2.49802…4+8⋅2.49802…3+6⋅2.49802…2+4⋅2.49802…+1=2310601127.77513…u11​=2.36880…
Δu11​=∣2.36880…−2.49802…∣=0.12921…Δu11​=0.12921…
u12​=2.24587…:Δu12​=0.12293…
f(u11​)=2⋅2.36880…20+2⋅2.36880…19+2⋅2.36880…18+2⋅2.36880…17+2⋅2.36880…16+2⋅2.36880…15+2⋅2.36880…14+2⋅2.36880…13+2⋅2.36880…12+2⋅2.36880…11+2⋅2.36880…10+2⋅2.36880…9+2⋅2.36880…8+2⋅2.36880…7+2⋅2.36880…6+2⋅2.36880…5+2⋅2.36880…4+2⋅2.36880…3+2⋅2.36880…2+2.36880…+1=107106520.29046…f′(u11​)=40⋅2.36880…19+38⋅2.36880…18+36⋅2.36880…17+34⋅2.36880…16+32⋅2.36880…15+30⋅2.36880…14+28⋅2.36880…13+26⋅2.36880…12+24⋅2.36880…11+22⋅2.36880…10+20⋅2.36880…9+18⋅2.36880…8+16⋅2.36880…7+14⋅2.36880…6+12⋅2.36880…5+10⋅2.36880…4+8⋅2.36880…3+6⋅2.36880…2+4⋅2.36880…+1=871274563.57524…u12​=2.24587…
Δu12​=∣2.24587…−2.36880…∣=0.12293…Δu12​=0.12293…
u13​=2.12888…:Δu13​=0.11698…
f(u12​)=2⋅2.24587…20+2⋅2.24587…19+2⋅2.24587…18+2⋅2.24587…17+2⋅2.24587…16+2⋅2.24587…15+2⋅2.24587…14+2⋅2.24587…13+2⋅2.24587…12+2⋅2.24587…11+2⋅2.24587…10+2⋅2.24587…9+2⋅2.24587…8+2⋅2.24587…7+2⋅2.24587…6+2⋅2.24587…5+2⋅2.24587…4+2⋅2.24587…3+2⋅2.24587…2+2.24587…+1=38429268.19821…f′(u12​)=40⋅2.24587…19+38⋅2.24587…18+36⋅2.24587…17+34⋅2.24587…16+32⋅2.24587…15+30⋅2.24587…14+28⋅2.24587…13+26⋅2.24587…12+24⋅2.24587…11+22⋅2.24587…10+20⋅2.24587…9+18⋅2.24587…8+16⋅2.24587…7+14⋅2.24587…6+12⋅2.24587…5+10⋅2.24587…4+8⋅2.24587…3+6⋅2.24587…2+4⋅2.24587…+1=328486438.92554…u13​=2.12888…
Δu13​=∣2.12888…−2.24587…∣=0.11698…Δu13​=0.11698…
u14​=2.01751…:Δu14​=0.11137…
f(u13​)=2⋅2.12888…20+2⋅2.12888…19+2⋅2.12888…18+2⋅2.12888…17+2⋅2.12888…16+2⋅2.12888…15+2⋅2.12888…14+2⋅2.12888…13+2⋅2.12888…12+2⋅2.12888…11+2⋅2.12888…10+2⋅2.12888…9+2⋅2.12888…8+2⋅2.12888…7+2⋅2.12888…6+2⋅2.12888…5+2⋅2.12888…4+2⋅2.12888…3+2⋅2.12888…2+2.12888…+1=13790835.58464…f′(u13​)=40⋅2.12888…19+38⋅2.12888…18+36⋅2.12888…17+34⋅2.12888…16+32⋅2.12888…15+30⋅2.12888…14+28⋅2.12888…13+26⋅2.12888…12+24⋅2.12888…11+22⋅2.12888…10+20⋅2.12888…9+18⋅2.12888…8+16⋅2.12888…7+14⋅2.12888…6+12⋅2.12888…5+10⋅2.12888…4+8⋅2.12888…3+6⋅2.12888…2+4⋅2.12888…+1=123820714.41332…u14​=2.01751…
Δu14​=∣2.01751…−2.12888…∣=0.11137…Δu14​=0.11137…
u15​=1.91142…:Δu15​=0.10608…
f(u14​)=2⋅2.01751…20+2⋅2.01751…19+2⋅2.01751…18+2⋅2.01751…17+2⋅2.01751…16+2⋅2.01751…15+2⋅2.01751…14+2⋅2.01751…13+2⋅2.01751…12+2⋅2.01751…11+2⋅2.01751…10+2⋅2.01751…9+2⋅2.01751…8+2⋅2.01751…7+2⋅2.01751…6+2⋅2.01751…5+2⋅2.01751…4+2⋅2.01751…3+2⋅2.01751…2+2.01751…+1=4950229.82773…f′(u14​)=40⋅2.01751…19+38⋅2.01751…18+36⋅2.01751…17+34⋅2.01751…16+32⋅2.01751…15+30⋅2.01751…14+28⋅2.01751…13+26⋅2.01751…12+24⋅2.01751…11+22⋅2.01751…10+20⋅2.01751…9+18⋅2.01751…8+16⋅2.01751…7+14⋅2.01751…6+12⋅2.01751…5+10⋅2.01751…4+8⋅2.01751…3+6⋅2.01751…2+4⋅2.01751…+1=46661280.69367…u15​=1.91142…
Δu15​=∣1.91142…−2.01751…∣=0.10608…Δu15​=0.10608…
u16​=1.81030…:Δu16​=0.10111…
f(u15​)=2⋅1.91142…20+2⋅1.91142…19+2⋅1.91142…18+2⋅1.91142…17+2⋅1.91142…16+2⋅1.91142…15+2⋅1.91142…14+2⋅1.91142…13+2⋅1.91142…12+2⋅1.91142…11+2⋅1.91142…10+2⋅1.91142…9+2⋅1.91142…8+2⋅1.91142…7+2⋅1.91142…6+2⋅1.91142…5+2⋅1.91142…4+2⋅1.91142…3+2⋅1.91142…2+1.91142…+1=1777460.56654…f′(u15​)=40⋅1.91142…19+38⋅1.91142…18+36⋅1.91142…17+34⋅1.91142…16+32⋅1.91142…15+30⋅1.91142…14+28⋅1.91142…13+26⋅1.91142…12+24⋅1.91142…11+22⋅1.91142…10+20⋅1.91142…9+18⋅1.91142…8+16⋅1.91142…7+14⋅1.91142…6+12⋅1.91142…5+10⋅1.91142…4+8⋅1.91142…3+6⋅1.91142…2+4⋅1.91142…+1=17578062.54966…u16​=1.81030…
Δu16​=∣1.81030…−1.91142…∣=0.10111…Δu16​=0.10111…
u17​=1.71383…:Δu17​=0.09646…
f(u16​)=2⋅1.81030…20+2⋅1.81030…19+2⋅1.81030…18+2⋅1.81030…17+2⋅1.81030…16+2⋅1.81030…15+2⋅1.81030…14+2⋅1.81030…13+2⋅1.81030…12+2⋅1.81030…11+2⋅1.81030…10+2⋅1.81030…9+2⋅1.81030…8+2⋅1.81030…7+2⋅1.81030…6+2⋅1.81030…5+2⋅1.81030…4+2⋅1.81030…3+2⋅1.81030…2+1.81030…+1=638502.05884…f′(u16​)=40⋅1.81030…19+38⋅1.81030…18+36⋅1.81030…17+34⋅1.81030…16+32⋅1.81030…15+30⋅1.81030…14+28⋅1.81030…13+26⋅1.81030…12+24⋅1.81030…11+22⋅1.81030…10+20⋅1.81030…9+18⋅1.81030…8+16⋅1.81030…7+14⋅1.81030…6+12⋅1.81030…5+10⋅1.81030…4+8⋅1.81030…3+6⋅1.81030…2+4⋅1.81030…+1=6618867.78758…u17​=1.71383…
Δu17​=∣1.71383…−1.81030…∣=0.09646…Δu17​=0.09646…
u18​=1.62169…:Δu18​=0.09214…
f(u17​)=2⋅1.71383…20+2⋅1.71383…19+2⋅1.71383…18+2⋅1.71383…17+2⋅1.71383…16+2⋅1.71383…15+2⋅1.71383…14+2⋅1.71383…13+2⋅1.71383…12+2⋅1.71383…11+2⋅1.71383…10+2⋅1.71383…9+2⋅1.71383…8+2⋅1.71383…7+2⋅1.71383…6+2⋅1.71383…5+2⋅1.71383…4+2⋅1.71383…3+2⋅1.71383…2+1.71383…+1=229500.02828…f′(u17​)=40⋅1.71383…19+38⋅1.71383…18+36⋅1.71383…17+34⋅1.71383…16+32⋅1.71383…15+30⋅1.71383…14+28⋅1.71383…13+26⋅1.71383…12+24⋅1.71383…11+22⋅1.71383…10+20⋅1.71383…9+18⋅1.71383…8+16⋅1.71383…7+14⋅1.71383…6+12⋅1.71383…5+10⋅1.71383…4+8⋅1.71383…3+6⋅1.71383…2+4⋅1.71383…+1=2490671.57675…u18​=1.62169…
Δu18​=∣1.62169…−1.71383…∣=0.09214…Δu18​=0.09214…
u19​=1.53352…:Δu19​=0.08816…
f(u18​)=2⋅1.62169…20+2⋅1.62169…19+2⋅1.62169…18+2⋅1.62169…17+2⋅1.62169…16+2⋅1.62169…15+2⋅1.62169…14+2⋅1.62169…13+2⋅1.62169…12+2⋅1.62169…11+2⋅1.62169…10+2⋅1.62169…9+2⋅1.62169…8+2⋅1.62169…7+2⋅1.62169…6+2⋅1.62169…5+2⋅1.62169…4+2⋅1.62169…3+2⋅1.62169…2+1.62169…+1=82559.70843…f′(u18​)=40⋅1.62169…19+38⋅1.62169…18+36⋅1.62169…17+34⋅1.62169…16+32⋅1.62169…15+30⋅1.62169…14+28⋅1.62169…13+26⋅1.62169…12+24⋅1.62169…11+22⋅1.62169…10+20⋅1.62169…9+18⋅1.62169…8+16⋅1.62169…7+14⋅1.62169…6+12⋅1.62169…5+10⋅1.62169…4+8⋅1.62169…3+6⋅1.62169…2+4⋅1.62169…+1=936373.05744…u19​=1.53352…
Δu19​=∣1.53352…−1.62169…∣=0.08816…Δu19​=0.08816…
u20​=1.44893…:Δu20​=0.08458…
f(u19​)=2⋅1.53352…20+2⋅1.53352…19+2⋅1.53352…18+2⋅1.53352…17+2⋅1.53352…16+2⋅1.53352…15+2⋅1.53352…14+2⋅1.53352…13+2⋅1.53352…12+2⋅1.53352…11+2⋅1.53352…10+2⋅1.53352…9+2⋅1.53352…8+2⋅1.53352…7+2⋅1.53352…6+2⋅1.53352…5+2⋅1.53352…4+2⋅1.53352…3+2⋅1.53352…2+1.53352…+1=29736.26727…f′(u19​)=40⋅1.53352…19+38⋅1.53352…18+36⋅1.53352…17+34⋅1.53352…16+32⋅1.53352…15+30⋅1.53352…14+28⋅1.53352…13+26⋅1.53352…12+24⋅1.53352…11+22⋅1.53352…10+20⋅1.53352…9+18⋅1.53352…8+16⋅1.53352…7+14⋅1.53352…6+12⋅1.53352…5+10⋅1.53352…4+8⋅1.53352…3+6⋅1.53352…2+4⋅1.53352…+1=351551.64069…u20​=1.44893…
Δu20​=∣1.44893…−1.53352…∣=0.08458…Δu20​=0.08458…
u21​=1.36746…:Δu21​=0.08146…
f(u20​)=2⋅1.44893…20+2⋅1.44893…19+2⋅1.44893…18+2⋅1.44893…17+2⋅1.44893…16+2⋅1.44893…15+2⋅1.44893…14+2⋅1.44893…13+2⋅1.44893…12+2⋅1.44893…11+2⋅1.44893…10+2⋅1.44893…9+2⋅1.44893…8+2⋅1.44893…7+2⋅1.44893…6+2⋅1.44893…5+2⋅1.44893…4+2⋅1.44893…3+2⋅1.44893…2+1.44893…+1=10730.28828…f′(u20​)=40⋅1.44893…19+38⋅1.44893…18+36⋅1.44893…17+34⋅1.44893…16+32⋅1.44893…15+30⋅1.44893…14+28⋅1.44893…13+26⋅1.44893…12+24⋅1.44893…11+22⋅1.44893…10+20⋅1.44893…9+18⋅1.44893…8+16⋅1.44893…7+14⋅1.44893…6+12⋅1.44893…5+10⋅1.44893…4+8⋅1.44893…3+6⋅1.44893…2+4⋅1.44893…+1=131710.17919…u21​=1.36746…
Δu21​=∣1.36746…−1.44893…∣=0.08146…Δu21​=0.08146…
u22​=1.28850…:Δu22​=0.07896…
f(u21​)=2⋅1.36746…20+2⋅1.36746…19+2⋅1.36746…18+2⋅1.36746…17+2⋅1.36746…16+2⋅1.36746…15+2⋅1.36746…14+2⋅1.36746…13+2⋅1.36746…12+2⋅1.36746…11+2⋅1.36746…10+2⋅1.36746…9+2⋅1.36746…8+2⋅1.36746…7+2⋅1.36746…6+2⋅1.36746…5+2⋅1.36746…4+2⋅1.36746…3+2⋅1.36746…2+1.36746…+1=3883.34198…f′(u21​)=40⋅1.36746…19+38⋅1.36746…18+36⋅1.36746…17+34⋅1.36746…16+32⋅1.36746…15+30⋅1.36746…14+28⋅1.36746…13+26⋅1.36746…12+24⋅1.36746…11+22⋅1.36746…10+20⋅1.36746…9+18⋅1.36746…8+16⋅1.36746…7+14⋅1.36746…6+12⋅1.36746…5+10⋅1.36746…4+8⋅1.36746…3+6⋅1.36746…2+4⋅1.36746…+1=49180.53699…u22​=1.28850…
Δu22​=∣1.28850…−1.36746…∣=0.07896…Δu22​=0.07896…
u23​=1.21118…:Δu23​=0.07732…
f(u22​)=2⋅1.28850…20+2⋅1.28850…19+2⋅1.28850…18+2⋅1.28850…17+2⋅1.28850…16+2⋅1.28850…15+2⋅1.28850…14+2⋅1.28850…13+2⋅1.28850…12+2⋅1.28850…11+2⋅1.28850…10+2⋅1.28850…9+2⋅1.28850…8+2⋅1.28850…7+2⋅1.28850…6+2⋅1.28850…5+2⋅1.28850…4+2⋅1.28850…3+2⋅1.28850…2+1.28850…+1=1412.13758…f′(u22​)=40⋅1.28850…19+38⋅1.28850…18+36⋅1.28850…17+34⋅1.28850…16+32⋅1.28850…15+30⋅1.28850…14+28⋅1.28850…13+26⋅1.28850…12+24⋅1.28850…11+22⋅1.28850…10+20⋅1.28850…9+18⋅1.28850…8+16⋅1.28850…7+14⋅1.28850…6+12⋅1.28850…5+10⋅1.28850…4+8⋅1.28850…3+6⋅1.28850…2+4⋅1.28850…+1=18261.62900…u23​=1.21118…
Δu23​=∣1.21118…−1.28850…∣=0.07732…Δu23​=0.07732…
u24​=1.13409…:Δu24​=0.07708…
f(u23​)=2⋅1.21118…20+2⋅1.21118…19+2⋅1.21118…18+2⋅1.21118…17+2⋅1.21118…16+2⋅1.21118…15+2⋅1.21118…14+2⋅1.21118…13+2⋅1.21118…12+2⋅1.21118…11+2⋅1.21118…10+2⋅1.21118…9+2⋅1.21118…8+2⋅1.21118…7+2⋅1.21118…6+2⋅1.21118…5+2⋅1.21118…4+2⋅1.21118…3+2⋅1.21118…2+1.21118…+1=517.69016…f′(u23​)=40⋅1.21118…19+38⋅1.21118…18+36⋅1.21118…17+34⋅1.21118…16+32⋅1.21118…15+30⋅1.21118…14+28⋅1.21118…13+26⋅1.21118…12+24⋅1.21118…11+22⋅1.21118…10+20⋅1.21118…9+18⋅1.21118…8+16⋅1.21118…7+14⋅1.21118…6+12⋅1.21118…5+10⋅1.21118…4+8⋅1.21118…3+6⋅1.21118…2+4⋅1.21118…+1=6715.60947…u24​=1.13409…
Δu24​=∣1.13409…−1.21118…∣=0.07708…Δu24​=0.07708…
u25​=1.05480…:Δu25​=0.07929…
f(u24​)=2⋅1.13409…20+2⋅1.13409…19+2⋅1.13409…18+2⋅1.13409…17+2⋅1.13409…16+2⋅1.13409…15+2⋅1.13409…14+2⋅1.13409…13+2⋅1.13409…12+2⋅1.13409…11+2⋅1.13409…10+2⋅1.13409…9+2⋅1.13409…8+2⋅1.13409…7+2⋅1.13409…6+2⋅1.13409…5+2⋅1.13409…4+2⋅1.13409…3+2⋅1.13409…2+1.13409…+1=192.47985…f′(u24​)=40⋅1.13409…19+38⋅1.13409…18+36⋅1.13409…17+34⋅1.13409…16+32⋅1.13409…15+30⋅1.13409…14+28⋅1.13409…13+26⋅1.13409…12+24⋅1.13409…11+22⋅1.13409…10+20⋅1.13409…9+18⋅1.13409…8+16⋅1.13409…7+14⋅1.13409…6+12⋅1.13409…5+10⋅1.13409…4+8⋅1.13409…3+6⋅1.13409…2+4⋅1.13409…+1=2427.51025…u25​=1.05480…
Δu25​=∣1.05480…−1.13409…∣=0.07929…Δu25​=0.07929…
u26​=0.96859…:Δu26​=0.08620…
f(u25​)=2⋅1.05480…20+2⋅1.05480…19+2⋅1.05480…18+2⋅1.05480…17+2⋅1.05480…16+2⋅1.05480…15+2⋅1.05480…14+2⋅1.05480…13+2⋅1.05480…12+2⋅1.05480…11+2⋅1.05480…10+2⋅1.05480…9+2⋅1.05480…8+2⋅1.05480…7+2⋅1.05480…6+2⋅1.05480…5+2⋅1.05480…4+2⋅1.05480…3+2⋅1.05480…2+1.05480…+1=73.34809…f′(u25​)=40⋅1.05480…19+38⋅1.05480…18+36⋅1.05480…17+34⋅1.05480…16+32⋅1.05480…15+30⋅1.05480…14+28⋅1.05480…13+26⋅1.05480…12+24⋅1.05480…11+22⋅1.05480…10+20⋅1.05480…9+18⋅1.05480…8+16⋅1.05480…7+14⋅1.05480…6+12⋅1.05480…5+10⋅1.05480…4+8⋅1.05480…3+6⋅1.05480…2+4⋅1.05480…+1=850.85072…u26​=0.96859…
Δu26​=∣0.96859…−1.05480…∣=0.08620…Δu26​=0.08620…
No se puede encontrar solución
La solución esSinsolucioˊnparau∈R
Las soluciones sonu=0,u=1
Sustituir en la ecuación u=sin(x)sin(x)=0,sin(x)=1
sin(x)=0,sin(x)=1
sin(x)=0:x=2πn,x=π+2πn
sin(x)=0
Soluciones generales para sin(x)=0
tabla de valores periódicos con 2πn intervalos:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Resolver x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
sin(x)=1:x=2π​+2πn
sin(x)=1
Soluciones generales para sin(x)=1
tabla de valores periódicos con 2πn intervalos:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=2π​+2πn
x=2π​+2πn
Combinar toda las solucionesx=2πn,x=π+2πn,x=2π​+2πn

Gráfica

Sorry, your browser does not support this application
Ver gráfico interactivo

Ejemplos populares

(1+tan^2(x))/(1+sec(x))=sec(x)-sin^2(x)+2cos(x)-2=0sin(5x-1)= 4/5sin^2(x)= 1/36tan(x)=31
Herramientas de estudioSolucionador Matemático de IAProblemas popularesHojas de trabajoPracticaHojas de referenciaCalculadorasCalculadora gráficaCalculadora de GeometríaVerificar solución
AplicacionesAplicación Symbolab (Android)Calculadora gráfica (Android)Practica (Android)Aplicación Symbolab (iOS)Calculadora gráfica (iOS)Practica (iOS)Extensión de ChromeSymbolab Math Solver API
EmpresaAcerca de SymbolabBlogAyuda
LegalPrivacidadTérminosPolítica de cookiesConfiguración de CookiesNo vendas ni compartas mi información personalCopyright, Guías Comunitarias, DSA & otros recursos legalesCentro Legal de Learneo
Redes sociales
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024