Soluciones
Calculadora de integrales (antiderivadas)Calculadora de derivadasCalculadora de ÁlgebraCalculadora de matricesMás...
Gráficos
Gráfica de líneaGráfica exponencialGráfica cuadráticaGráfico de senoMás...
Calculadoras
Calculadora de IMCCalculadora de interés compuestoCalculadora de porcentajeCalculadora de aceleraciónMás...
Geometría
Calculadora del teorema de pitágorasCalculadora del área del círculoCalculadora de triángulo isóscelesCalculadora de TriángulosMás...
Herramientas
CuadernoGruposHojas de referenciaHojas de trabajoPracticaVerificar
es
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometría >

cos^{23}(x)+cos^2(x)=0

  • Pre-Álgebra
  • Álgebra
  • Precálculo
  • Cálculo
  • Funciones
  • Álgebra Lineal
  • Trigonometría
  • Estadística
  • Química
  • Economía
  • Conversiones

Solución

cos23(x)+cos2(x)=0

Solución

x=2π​+2πn,x=23π​+2πn,x=π+2πn
+1
Grados
x=90∘+360∘n,x=270∘+360∘n,x=180∘+360∘n
Pasos de solución
cos23(x)+cos2(x)=0
Usando el método de sustitución
cos23(x)+cos2(x)=0
Sea: cos(x)=uu23+u2=0
u23+u2=0:u=0,u=−1
u23+u2=0
Factorizar u23+u2:u2(u+1)(u6−u5+u4−u3+u2−u+1)(u14−u7+1)
u23+u2
Factorizar el termino común u2:u2(u21+1)
u23+u2
Aplicar las leyes de los exponentes: ab+c=abacu23=u21u2=u21u2+u2
Factorizar el termino común u2=u2(u21+1)
=u2(u21+1)
Factorizar u21+1:(u+1)(u6−u5+u4−u3+u2−u+1)(u14−u7+1)
u21+1
Reescribir u21+1 como (u7)3+13
u21+1
Reescribir 1 como 13=u21+13
Aplicar las leyes de los exponentes: abc=(ab)cu21=(u7)3=(u7)3+13
=(u7)3+13
Aplicar la siguiente regla de productos notables (Suma de cubos): x3+y3=(x+y)(x2−xy+y2)(u7)3+13=(u7+1)(u14−u7+1)=(u7+1)(u14−u7+1)
Factorizar u7+1:(u+1)(u6−u5+u4−u3+u2−u+1)
u7+1
Reescribir 1 como 17=u7+17
Aplicar la regla de factorización: xn+yn=(x+y)(xn−1−xn−2y+…−xyn−2+yn−1)n is oddu7+17=(u+1)(u6−u5+u4−u3+u2−u+1)=(u+1)(u6−u5+u4−u3+u2−u+1)
=(u+1)(u6−u5+u4−u3+u2−u+1)(u14−u7+1)
=u2(u+1)(u6−u5+u4−u3+u2−u+1)(u14−u7+1)
u2(u+1)(u6−u5+u4−u3+u2−u+1)(u14−u7+1)=0
Usando la propiedad del factor cero: Si ab=0entonces a=0o b=0u=0oru+1=0oru6−u5+u4−u3+u2−u+1=0oru14−u7+1=0
Resolver u+1=0:u=−1
u+1=0
Desplace 1a la derecha
u+1=0
Restar 1 de ambos ladosu+1−1=0−1
Simplificaru=−1
u=−1
Resolver u6−u5+u4−u3+u2−u+1=0:Sin solución para u∈R
u6−u5+u4−u3+u2−u+1=0
Encontrar una solución para u6−u5+u4−u3+u2−u+1=0 utilizando el método de Newton-Raphson:Sin solución para u∈R
u6−u5+u4−u3+u2−u+1=0
Definición del método de Newton-Raphson
f(u)=u6−u5+u4−u3+u2−u+1
Hallar f′(u):6u5−5u4+4u3−3u2+2u−1
dud​(u6−u5+u4−u3+u2−u+1)
Aplicar la regla de la suma/diferencia: (f±g)′=f′±g′=dud​(u6)−dud​(u5)+dud​(u4)−dud​(u3)+dud​(u2)−dudu​+dud​(1)
dud​(u6)=6u5
dud​(u6)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=6u6−1
Simplificar=6u5
dud​(u5)=5u4
dud​(u5)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=5u5−1
Simplificar=5u4
dud​(u4)=4u3
dud​(u4)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=4u4−1
Simplificar=4u3
dud​(u3)=3u2
dud​(u3)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=3u3−1
Simplificar=3u2
dud​(u2)=2u
dud​(u2)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=2u2−1
Simplificar=2u
dudu​=1
dudu​
Aplicar la regla de derivación: dudu​=1=1
dud​(1)=0
dud​(1)
Derivada de una constante: dxd​(a)=0=0
=6u5−5u4+4u3−3u2+2u−1+0
Simplificar=6u5−5u4+4u3−3u2+2u−1
Sea u0​=1Calcular un+1​ hasta que Δun+1​<0.000001
u1​=0.66666…:Δu1​=0.33333…
f(u0​)=16−15+14−13+12−1+1=1f′(u0​)=6⋅15−5⋅14+4⋅13−3⋅12+2⋅1−1=3u1​=0.66666…
Δu1​=∣0.66666…−1∣=0.33333…Δu1​=0.33333…
u2​=52.11111…:Δu2​=51.44444…
f(u1​)=0.66666…6−0.66666…5+0.66666…4−0.66666…3+0.66666…2−0.66666…+1=0.63511…f′(u1​)=6⋅0.66666…5−5⋅0.66666…4+4⋅0.66666…3−3⋅0.66666…2+2⋅0.66666…−1=−0.01234…u2​=52.11111…
Δu2​=∣52.11111…−0.66666…∣=51.44444…Δu2​=51.44444…
u3​=43.45309…:Δu3​=8.65801…
f(u2​)=52.11111…6−52.11111…5+52.11111…4−52.11111…3+52.11111…2−52.11111…+1=19648388910.5653f′(u2​)=6⋅52.11111…5−5⋅52.11111…4+4⋅52.11111…3−3⋅52.11111…2+2⋅52.11111…−1=2269387078.62673…u3​=43.45309…
Δu3​=∣43.45309…−52.11111…∣=8.65801…Δu3​=8.65801…
u4​=36.23796…:Δu4​=7.21513…
f(u3​)=43.45309…6−43.45309…5+43.45309…4−43.45309…3+43.45309…2−43.45309…+1=6580259602.39668…f′(u3​)=6⋅43.45309…5−5⋅43.45309…4+4⋅43.45309…3−3⋅43.45309…2+2⋅43.45309…−1=912008321.82339…u4​=36.23796…
Δu4​=∣36.23796…−43.45309…∣=7.21513…Δu4​=7.21513…
u5​=30.22521…:Δu5​=6.01274…
f(u4​)=36.23796…6−36.23796…5+36.23796…4−36.23796…3+36.23796…2−36.23796…+1=2203741351.76969…f′(u4​)=6⋅36.23796…5−5⋅36.23796…4+4⋅36.23796…3−3⋅36.23796…2+2⋅36.23796…−1=366511428.47054…u5​=30.22521…
Δu5​=∣30.22521…−36.23796…∣=6.01274…Δu5​=6.01274…
u6​=25.21442…:Δu6​=5.01079…
f(u5​)=30.22521…6−30.22521…5+30.22521…4−30.22521…3+30.22521…2−30.22521…+1=738040770.05592…f′(u5​)=6⋅30.22521…5−5⋅30.22521…4+4⋅30.22521…3−3⋅30.22521…2+2⋅30.22521…−1=147290289.66438…u6​=25.21442…
Δu6​=∣25.21442…−30.22521…∣=5.01079…Δu6​=5.01079…
u7​=21.03856…:Δu7​=4.17585…
f(u6​)=25.21442…6−25.21442…5+25.21442…4−25.21442…3+25.21442…2−25.21442…+1=247174180.13704…f′(u6​)=6⋅25.21442…5−5⋅25.21442…4+4⋅25.21442…3−3⋅25.21442…2+2⋅25.21442…−1=59191278.12486…u7​=21.03856…
Δu7​=∣21.03856…−25.21442…∣=4.17585…Δu7​=4.17585…
u8​=17.55845…:Δu8​=3.48010…
f(u7​)=21.03856…6−21.03856…5+21.03856…4−21.03856…3+21.03856…2−21.03856…+1=82780889.58008…f′(u7​)=6⋅21.03856…5−5⋅21.03856…4+4⋅21.03856…3−3⋅21.03856…2+2⋅21.03856…−1=23786860.21097…u8​=17.55845…
Δu8​=∣17.55845…−21.03856…∣=3.48010…Δu8​=3.48010…
u9​=14.65809…:Δu9​=2.90036…
f(u8​)=17.55845…6−17.55845…5+17.55845…4−17.55845…3+17.55845…2−17.55845…+1=27724453.98017…f′(u8​)=6⋅17.55845…5−5⋅17.55845…4+4⋅17.55845…3−3⋅17.55845…2+2⋅17.55845…−1=9558960.37202…u9​=14.65809…
Δu9​=∣14.65809…−17.55845…∣=2.90036…Δu9​=2.90036…
u10​=12.24081…:Δu10​=2.41728…
f(u9​)=14.65809…6−14.65809…5+14.65809…4−14.65809…3+14.65809…2−14.65809…+1=9285475.65063…f′(u9​)=6⋅14.65809…5−5⋅14.65809…4+4⋅14.65809…3−3⋅14.65809…2+2⋅14.65809…−1=3841280.89299…u10​=12.24081…
Δu10​=∣12.24081…−14.65809…∣=2.41728…Δu10​=2.41728…
u11​=10.22603…:Δu11​=2.01477…
f(u10​)=12.24081…6−12.24081…5+12.24081…4−12.24081…3+12.24081…2−12.24081…+1=3109973.57380…f′(u10​)=6⋅12.24081…5−5⋅12.24081…4+4⋅12.24081…3−3⋅12.24081…2+2⋅12.24081…−1=1543583.94342…u11​=10.22603…
Δu11​=∣10.22603…−12.24081…∣=2.01477…Δu11​=2.01477…
u12​=8.54662…:Δu12​=1.67940…
f(u11​)=10.22603…6−10.22603…5+10.22603…4−10.22603…3+10.22603…2−10.22603…+1=1041657.31792…f′(u11​)=6⋅10.22603…5−5⋅10.22603…4+4⋅10.22603…3−3⋅10.22603…2+2⋅10.22603…−1=620253.30227…u12​=8.54662…
Δu12​=∣8.54662…−10.22603…∣=1.67940…Δu12​=1.67940…
u13​=7.14663…:Δu13​=1.39999…
f(u12​)=8.54662…6−8.54662…5+8.54662…4−8.54662…3+8.54662…2−8.54662…+1=348910.71727…f′(u12​)=6⋅8.54662…5−5⋅8.54662…4+4⋅8.54662…3−3⋅8.54662…2+2⋅8.54662…−1=249222.40253…u13​=7.14663…
Δu13​=∣7.14663…−8.54662…∣=1.39999…Δu13​=1.39999…
u14​=5.97940…:Δu14​=1.16722…
f(u13​)=7.14663…6−7.14663…5+7.14663…4−7.14663…3+7.14663…2−7.14663…+1=116877.91488…f′(u13​)=6⋅7.14663…5−5⋅7.14663…4+4⋅7.14663…3−3⋅7.14663…2+2⋅7.14663…−1=100132.95261…u14​=5.97940…
Δu14​=∣5.97940…−7.14663…∣=1.16722…Δu14​=1.16722…
u15​=5.00607…:Δu15​=0.97332…
f(u14​)=5.97940…6−5.97940…5+5.97940…4−5.97940…3+5.97940…2−5.97940…+1=39155.16368…f′(u14​)=6⋅5.97940…5−5⋅5.97940…4+4⋅5.97940…3−3⋅5.97940…2+2⋅5.97940…−1=40228.09525…u15​=5.00607…
Δu15​=∣5.00607…−5.97940…∣=0.97332…Δu15​=0.97332…
u16​=4.19424…:Δu16​=0.81183…
f(u15​)=5.00607…6−5.00607…5+5.00607…4−5.00607…3+5.00607…2−5.00607…+1=13118.88548…f′(u15​)=6⋅5.00607…5−5⋅5.00607…4+4⋅5.00607…3−3⋅5.00607…2+2⋅5.00607…−1=16159.64494…u16​=4.19424…
Δu16​=∣4.19424…−5.00607…∣=0.81183…Δu16​=0.81183…
u17​=3.51690…:Δu17​=0.67734…
f(u16​)=4.19424…6−4.19424…5+4.19424…4−4.19424…3+4.19424…2−4.19424…+1=4396.16496…f′(u16​)=6⋅4.19424…5−5⋅4.19424…4+4⋅4.19424…3−3⋅4.19424…2+2⋅4.19424…−1=6490.31866…u17​=3.51690…
Δu17​=∣3.51690…−4.19424…∣=0.67734…Δu17​=0.67734…
u18​=2.95151…:Δu18​=0.56538…
f(u17​)=3.51690…6−3.51690…5+3.51690…4−3.51690…3+3.51690…2−3.51690…+1=1473.49363…f′(u17​)=6⋅3.51690…5−5⋅3.51690…4+4⋅3.51690…3−3⋅3.51690…2+2⋅3.51690…−1=2606.16404…u18​=2.95151…
Δu18​=∣2.95151…−3.51690…∣=0.56538…Δu18​=0.56538…
u19​=2.47923…:Δu19​=0.47228…
f(u18​)=2.95151…6−2.95151…5+2.95151…4−2.95151…3+2.95151…2−2.95151…+1=494.05485…f′(u18​)=6⋅2.95151…5−5⋅2.95151…4+4⋅2.95151…3−3⋅2.95151…2+2⋅2.95151…−1=1046.10186…u19​=2.47923…
Δu19​=∣2.47923…−2.95151…∣=0.47228…Δu19​=0.47228…
u20​=2.08415…:Δu20​=0.39507…
f(u19​)=2.47923…6−2.47923…5+2.47923…4−2.47923…3+2.47923…2−2.47923…+1=165.76521…f′(u19​)=6⋅2.47923…5−5⋅2.47923…4+4⋅2.47923…3−3⋅2.47923…2+2⋅2.47923…−1=419.57444…u20​=2.08415…
Δu20​=∣2.08415…−2.47923…∣=0.39507…Δu20​=0.39507…
u21​=1.75246…:Δu21​=0.33168…
f(u20​)=2.08415…6−2.08415…5+2.08415…4−2.08415…3+2.08415…2−2.08415…+1=55.70695…f′(u20​)=6⋅2.08415…5−5⋅2.08415…4+4⋅2.08415…3−3⋅2.08415…2+2⋅2.08415…−1=167.95023…u21​=1.75246…
Δu21​=∣1.75246…−2.08415…∣=0.33168…Δu21​=0.33168…
u22​=1.47108…:Δu22​=0.28138…
f(u21​)=1.75246…6−1.75246…5+1.75246…4−1.75246…3+1.75246…2−1.75246…+1=18.80617…f′(u21​)=6⋅1.75246…5−5⋅1.75246…4+4⋅1.75246…3−3⋅1.75246…2+2⋅1.75246…−1=66.83509…u22​=1.47108…
Δu22​=∣1.47108…−1.75246…∣=0.28138…Δu22​=0.28138…
u23​=1.22445…:Δu23​=0.24663…
f(u22​)=1.47108…6−1.47108…5+1.47108…4−1.47108…3+1.47108…2−1.47108…+1=6.43831…f′(u22​)=6⋅1.47108…5−5⋅1.47108…4+4⋅1.47108…3−3⋅1.47108…2+2⋅1.47108…−1=26.10492…u23​=1.22445…
Δu23​=∣1.22445…−1.47108…∣=0.24663…Δu23​=0.24663…
u24​=0.98361…:Δu24​=0.24083…
f(u23​)=1.22445…6−1.22445…5+1.22445…4−1.22445…3+1.22445…2−1.22445…+1=2.30467…f′(u23​)=6⋅1.22445…5−5⋅1.22445…4+4⋅1.22445…3−3⋅1.22445…2+2⋅1.22445…−1=9.56939…u24​=0.98361…
Δu24​=∣0.98361…−1.22445…∣=0.24083…Δu24​=0.24083…
u25​=0.63257…:Δu25​=0.35104…
f(u24​)=0.98361…6−0.98361…5+0.98361…4−0.98361…3+0.98361…2−0.98361…+1=0.95320…f′(u24​)=6⋅0.98361…5−5⋅0.98361…4+4⋅0.98361…3−3⋅0.98361…2+2⋅0.98361…−1=2.71536…u25​=0.63257…
Δu25​=∣0.63257…−0.98361…∣=0.35104…Δu25​=0.35104…
u26​=6.14224…:Δu26​=5.50967…
f(u25​)=0.63257…6−0.63257…5+0.63257…4−0.63257…3+0.63257…2−0.63257…+1=0.63735…f′(u25​)=6⋅0.63257…5−5⋅0.63257…4+4⋅0.63257…3−3⋅0.63257…2+2⋅0.63257…−1=−0.11567…u26​=6.14224…
Δu26​=∣6.14224…−0.63257…∣=5.50967…Δu26​=5.50967…
u27​=5.14187…:Δu27​=1.00036…
f(u26​)=6.14224…6−6.14224…5+6.14224…4−6.14224…3+6.14224…2−6.14224…+1=46180.38876…f′(u26​)=6⋅6.14224…5−5⋅6.14224…4+4⋅6.14224…3−3⋅6.14224…2+2⋅6.14224…−1=46163.42164…u27​=5.14187…
Δu27​=∣5.14187…−6.14224…∣=1.00036…Δu27​=1.00036…
u28​=4.30753…:Δu28​=0.83434…
f(u27​)=5.14187…6−5.14187…5+5.14187…4−5.14187…3+5.14187…2−5.14187…+1=15472.36679…f′(u27​)=6⋅5.14187…5−5⋅5.14187…4+4⋅5.14187…3−3⋅5.14187…2+2⋅5.14187…−1=18544.23303…u28​=4.30753…
Δu28​=∣4.30753…−5.14187…∣=0.83434…Δu28​=0.83434…
u29​=3.61143…:Δu29​=0.69609…
f(u28​)=4.30753…6−4.30753…5+4.30753…4−4.30753…3+4.30753…2−4.30753…+1=5184.67948…f′(u28​)=6⋅4.30753…5−5⋅4.30753…4+4⋅4.30753…3−3⋅4.30753…2+2⋅4.30753…−1=7448.26072…u29​=3.61143…
Δu29​=∣3.61143…−4.30753…∣=0.69609…Δu29​=0.69609…
u30​=3.03044…:Δu30​=0.58099…
f(u29​)=3.61143…6−3.61143…5+3.61143…4−3.61143…3+3.61143…2−3.61143…+1=1737.71673…f′(u29​)=6⋅3.61143…5−5⋅3.61143…4+4⋅3.61143…3−3⋅3.61143…2+2⋅3.61143…−1=2990.94430…u30​=3.03044…
Δu30​=∣3.03044…−3.61143…∣=0.58099…Δu30​=0.58099…
u31​=2.54519…:Δu31​=0.48524…
f(u30​)=3.03044…6−3.03044…5+3.03044…4−3.03044…3+3.03044…2−3.03044…+1=582.60893…f′(u30​)=6⋅3.03044…5−5⋅3.03044…4+4⋅3.03044…3−3⋅3.03044…2+2⋅3.03044…−1=1200.63833…u31​=2.54519…
Δu31​=∣2.54519…−3.03044…∣=0.48524…Δu31​=0.48524…
u32​=2.13939…:Δu32​=0.40580…
f(u31​)=2.54519…6−2.54519…5+2.54519…4−2.54519…3+2.54519…2−2.54519…+1=195.44997…f′(u31​)=6⋅2.54519…5−5⋅2.54519…4+4⋅2.54519…3−3⋅2.54519…2+2⋅2.54519…−1=481.63531…u32​=2.13939…
Δu32​=∣2.13939…−2.54519…∣=0.40580…Δu32​=0.40580…
u33​=1.79897…:Δu33​=0.34041…
f(u32​)=2.13939…6−2.13939…5+2.13939…4−2.13939…3+2.13939…2−2.13939…+1=65.65954…f′(u32​)=6⋅2.13939…5−5⋅2.13939…4+4⋅2.13939…3−3⋅2.13939…2+2⋅2.13939…−1=192.87838…u33​=1.79897…
Δu33​=∣1.79897…−2.13939…∣=0.34041…Δu33​=0.34041…
u34​=1.51087…:Δu34​=0.28809…
f(u33​)=1.79897…6−1.79897…5+1.79897…4−1.79897…3+1.79897…2−1.79897…+1=22.14298…f′(u33​)=6⋅1.79897…5−5⋅1.79897…4+4⋅1.79897…3−3⋅1.79897…2+2⋅1.79897…−1=76.85953…u34​=1.51087…
Δu34​=∣1.51087…−1.79897…∣=0.28809…Δu34​=0.28809…
u35​=1.26028…:Δu35​=0.25058…
f(u34​)=1.51087…6−1.51087…5+1.51087…4−1.51087…3+1.51087…2−1.51087…+1=7.55598…f′(u34​)=6⋅1.51087…5−5⋅1.51087…4+4⋅1.51087…3−3⋅1.51087…2+2⋅1.51087…−1=30.15294…u35​=1.26028…
Δu35​=∣1.26028…−1.51087…∣=0.25058…Δu35​=0.25058…
u36​=1.02183…:Δu36​=0.23844…
f(u35​)=1.26028…6−1.26028…5+1.26028…4−1.26028…3+1.26028…2−1.26028…+1=2.67661…f′(u35​)=6⋅1.26028…5−5⋅1.26028…4+4⋅1.26028…3−3⋅1.26028…2+2⋅1.26028…−1=11.22518…u36​=1.02183…
Δu36​=∣1.02183…−1.26028…∣=0.23844…Δu36​=0.23844…
u37​=0.70827…:Δu37​=0.31356…
f(u36​)=1.02183…6−1.02183…5+1.02183…4−1.02183…3+1.02183…2−1.02183…+1=1.06994…f′(u36​)=6⋅1.02183…5−5⋅1.02183…4+4⋅1.02183…3−3⋅1.02183…2+2⋅1.02183…−1=3.41216…u37​=0.70827…
Δu37​=∣0.70827…−1.02183…∣=0.31356…Δu37​=0.31356…
No se puede encontrar solución
La solución esSinsolucioˊnparau∈R
Resolver u14−u7+1=0:Sin solución para u∈R
u14−u7+1=0
Encontrar una solución para u14−u7+1=0 utilizando el método de Newton-Raphson:Sin solución para u∈R
u14−u7+1=0
Definición del método de Newton-Raphson
f(u)=u14−u7+1
Hallar f′(u):14u13−7u6
dud​(u14−u7+1)
Aplicar la regla de la suma/diferencia: (f±g)′=f′±g′=dud​(u14)−dud​(u7)+dud​(1)
dud​(u14)=14u13
dud​(u14)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=14u14−1
Simplificar=14u13
dud​(u7)=7u6
dud​(u7)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=7u7−1
Simplificar=7u6
dud​(1)=0
dud​(1)
Derivada de una constante: dxd​(a)=0=0
=14u13−7u6+0
Simplificar=14u13−7u6
Sea u0​=−1Calcular un+1​ hasta que Δun+1​<0.000001
u1​=−0.85714…:Δu1​=0.14285…
f(u0​)=(−1)14−(−1)7+1=3f′(u0​)=14(−1)13−7(−1)6=−21u1​=−0.85714…
Δu1​=∣−0.85714…−(−1)∣=0.14285…Δu1​=0.14285…
u2​=−0.54502…:Δu2​=0.31211…
f(u1​)=(−0.85714…)14−(−0.85714…)7+1=1.45546…f′(u1​)=14(−0.85714…)13−7(−0.85714…)6=−4.66319…u2​=−0.54502…
Δu2​=∣−0.54502…−(−0.85714…)∣=0.31211…Δu2​=0.31211…
u3​=4.83036…:Δu3​=5.37539…
f(u2​)=(−0.54502…)14−(−0.54502…)7+1=1.01449…f′(u2​)=14(−0.54502…)13−7(−0.54502…)6=−0.18872…u3​=4.83036…
Δu3​=∣4.83036…−(−0.54502…)∣=5.37539…Δu3​=5.37539…
u4​=4.48534…:Δu4​=0.34502…
f(u3​)=4.83036…14−4.83036…7+1=3764539189.66291…f′(u3​)=14⋅4.83036…13−7⋅4.83036…6=10910972868.24572u4​=4.48534…
Δu4​=∣4.48534…−4.83036…∣=0.34502…Δu4​=0.34502…
u5​=4.16496…:Δu5​=0.32037…
f(u4​)=4.48534…14−4.48534…7+1=1333906086.09062…f′(u4​)=14⋅4.48534…13−7⋅4.48534…6=4163549426.74544…u5​=4.16496…
Δu5​=∣4.16496…−4.48534…∣=0.32037…Δu5​=0.32037…
u6​=3.86747…:Δu6​=0.29749…
f(u5​)=4.16496…14−4.16496…7+1=472648196.17869…f′(u5​)=14⋅4.16496…13−7⋅4.16496…6=1588783582.76017…u6​=3.86747…
Δu6​=∣3.86747…−4.16496…∣=0.29749…Δu6​=0.29749…
u7​=3.59123…:Δu7​=0.27623…
f(u6​)=3.86747…14−3.86747…7+1=167474855.60144…f′(u6​)=14⋅3.86747…13−7⋅3.86747…6=606271364.08925…u7​=3.59123…
Δu7​=∣3.59123…−3.86747…∣=0.27623…Δu7​=0.27623…
u8​=3.33473…:Δu8​=0.25650…
f(u7​)=3.59123…14−3.59123…7+1=59341606.39963…f′(u7​)=14⋅3.59123…13−7⋅3.59123…6=231351084.81736…u8​=3.33473…
Δu8​=∣3.33473…−3.59123…∣=0.25650…Δu8​=0.25650…
u9​=3.09656…:Δu9​=0.23816…
f(u8​)=3.33473…14−3.33473…7+1=21026440.56959…f′(u8​)=14⋅3.33473…13−7⋅3.33473…6=88283526.43084…u9​=3.09656…
Δu9​=∣3.09656…−3.33473…∣=0.23816…Δu9​=0.23816…
u10​=2.87542…:Δu10​=0.22114…
f(u9​)=3.09656…14−3.09656…7+1=7450180.69725…f′(u9​)=14⋅3.09656…13−7⋅3.09656…6=33689450.55443…u10​=2.87542…
Δu10​=∣2.87542…−3.09656…∣=0.22114…Δu10​=0.22114…
u11​=2.67009…:Δu11​=0.20532…
f(u10​)=2.87542…14−2.87542…7+1=2639725.48192…f′(u10​)=14⋅2.87542…13−7⋅2.87542…6=12856372.82329…u11​=2.67009…
Δu11​=∣2.67009…−2.87542…∣=0.20532…Δu11​=0.20532…
u12​=2.47947…:Δu12​=0.19062…
f(u11​)=2.67009…14−2.67009…7+1=935266.72285…f′(u11​)=14⋅2.67009…13−7⋅2.67009…6=4906369.06001…u12​=2.47947…
Δu12​=∣2.47947…−2.67009…∣=0.19062…Δu12​=0.19062…
u13​=2.30252…:Δu13​=0.17695…
f(u12​)=2.47947…14−2.47947…7+1=331349.76638…f′(u12​)=14⋅2.47947…13−7⋅2.47947…6=1872538.71063…u13​=2.30252…
Δu13​=∣2.30252…−2.47947…∣=0.17695…Δu13​=0.17695…
u14​=2.13829…:Δu14​=0.16422…
f(u13​)=2.30252…14−2.30252…7+1=117380.28802…f′(u13​)=14⋅2.30252…13−7⋅2.30252…6=714742.41872…u14​=2.13829…
Δu14​=∣2.13829…−2.30252…∣=0.16422…Δu14​=0.16422…
u15​=1.98593…:Δu15​=0.15236…
f(u14​)=2.13829…14−2.13829…7+1=41575.02774…f′(u14​)=14⋅2.13829…13−7⋅2.13829…6=272865.36981…u15​=1.98593…
Δu15​=∣1.98593…−2.13829…∣=0.15236…Δu15​=0.15236…
u16​=1.84465…:Δu16​=0.14127…
f(u15​)=1.98593…14−1.98593…7+1=14721.50063…f′(u15​)=14⋅1.98593…13−7⋅1.98593…6=104202.85485…u16​=1.84465…
Δu16​=∣1.84465…−1.98593…∣=0.14127…Δu16​=0.14127…
u17​=1.71378…:Δu17​=0.13087…
f(u16​)=1.84465…14−1.84465…7+1=5210.48671…f′(u16​)=14⋅1.84465…13−7⋅1.84465…6=39813.17132…u17​=1.71378…
Δu17​=∣1.71378…−1.84465…∣=0.13087…Δu17​=0.13087…
u18​=1.59272…:Δu18​=0.12105…
f(u17​)=1.71378…14−1.71378…7+1=1842.86223…f′(u17​)=14⋅1.71378…13−7⋅1.71378…6=15223.65016…u18​=1.59272…
Δu18​=∣1.59272…−1.71378…∣=0.12105…Δu18​=0.12105…
u19​=1.48102…:Δu19​=0.11170…
f(u18​)=1.59272…14−1.59272…7+1=651.06020…f′(u18​)=14⋅1.59272…13−7⋅1.59272…6=5828.26805…u19​=1.48102…
Δu19​=∣1.48102…−1.59272…∣=0.11170…Δu19​=0.11170…
u20​=1.37828…:Δu20​=0.10273…
f(u19​)=1.48102…14−1.48102…7+1=229.63507…f′(u19​)=14⋅1.48102…13−7⋅1.48102…6=2235.14206…u20​=1.37828…
Δu20​=∣1.37828…−1.48102…∣=0.10273…Δu20​=0.10273…
u21​=1.28417…:Δu21​=0.09411…
f(u20​)=1.37828…14−1.37828…7+1=80.82807…f′(u20​)=14⋅1.37828…13−7⋅1.37828…6=858.84639…u21​=1.28417…
Δu21​=∣1.28417…−1.37828…∣=0.09411…Δu21​=0.09411…
u22​=1.19813…:Δu22​=0.08603…
f(u21​)=1.28417…14−1.28417…7+1=28.40880…f′(u21​)=14⋅1.28417…13−7⋅1.28417…6=330.20328…u22​=1.19813…
Δu22​=∣1.19813…−1.28417…∣=0.08603…Δu22​=0.08603…
u23​=1.11867…:Δu23​=0.07945…
f(u22​)=1.19813…14−1.19813…7+1=10.01843…f′(u22​)=14⋅1.19813…13−7⋅1.19813…6=126.08661…u23​=1.11867…
Δu23​=∣1.11867…−1.19813…∣=0.07945…Δu23​=0.07945…
u24​=1.04084…:Δu24​=0.07783…
f(u23​)=1.11867…14−1.11867…7+1=3.61456…f′(u23​)=14⋅1.11867…13−7⋅1.11867…6=46.43999…u24​=1.04084…
Δu24​=∣1.04084…−1.11867…∣=0.07783…Δu24​=0.07783…
u25​=0.94342…:Δu25​=0.09742…
f(u24​)=1.04084…14−1.04084…7+1=1.42806…f′(u24​)=14⋅1.04084…13−7⋅1.04084…6=14.65834…u25​=0.94342…
Δu25​=∣0.94342…−1.04084…∣=0.09742…Δu25​=0.09742…
u26​=0.46673…:Δu26​=0.47668…
f(u25​)=0.94342…14−0.94342…7+1=0.77728…f′(u25​)=14⋅0.94342…13−7⋅0.94342…6=1.63060…u26​=0.46673…
Δu26​=∣0.46673…−0.94342…∣=0.47668…Δu26​=0.47668…
No se puede encontrar solución
La solución esSinsolucioˊnparau∈R
Las soluciones sonu=0,u=−1
Sustituir en la ecuación u=cos(x)cos(x)=0,cos(x)=−1
cos(x)=0,cos(x)=−1
cos(x)=0:x=2π​+2πn,x=23π​+2πn
cos(x)=0
Soluciones generales para cos(x)=0
cos(x) tabla de valores periódicos con 2πn intervalos:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
cos(x)=−1:x=π+2πn
cos(x)=−1
Soluciones generales para cos(x)=−1
cos(x) tabla de valores periódicos con 2πn intervalos:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=π+2πn
x=π+2πn
Combinar toda las solucionesx=2π​+2πn,x=23π​+2πn,x=π+2πn

Gráfica

Sorry, your browser does not support this application
Ver gráfico interactivo

Ejemplos populares

sin(b)=0.775-2cos^2(x)+3sin(x)+3=02cos^2(x)=sqrt(3)*cos(x)4(cos(x)+1)cos(x)=3sin^2(x)+1=cos^2(x)-2sin^4(x)
Herramientas de estudioSolucionador Matemático de IAProblemas popularesHojas de trabajoPracticaHojas de referenciaCalculadorasCalculadora gráficaCalculadora de GeometríaVerificar solución
AplicacionesAplicación Symbolab (Android)Calculadora gráfica (Android)Practica (Android)Aplicación Symbolab (iOS)Calculadora gráfica (iOS)Practica (iOS)Extensión de ChromeSymbolab Math Solver API
EmpresaAcerca de SymbolabBlogAyuda
LegalPrivacidadTérminosPolítica de cookiesConfiguración de CookiesNo vendas ni compartas mi información personalCopyright, Guías Comunitarias, DSA & otros recursos legalesCentro Legal de Learneo
Redes sociales
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024