Soluciones
Calculadora de integrales (antiderivadas)Calculadora de derivadasCalculadora de ÁlgebraCalculadora de matricesMás...
Gráficos
Gráfica de líneaGráfica exponencialGráfica cuadráticaGráfico de senoMás...
Calculadoras
Calculadora de IMCCalculadora de interés compuestoCalculadora de porcentajeCalculadora de aceleraciónMás...
Geometría
Calculadora del teorema de pitágorasCalculadora del área del círculoCalculadora de triángulo isóscelesCalculadora de TriángulosMás...
Herramientas
CuadernoGruposHojas de referenciaHojas de trabajoPracticaVerificar
es
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometría >

sqrt(1-cos(x))= 1/(2sin^2(x))

  • Pre-Álgebra
  • Álgebra
  • Precálculo
  • Cálculo
  • Funciones
  • Álgebra Lineal
  • Trigonometría
  • Estadística
  • Química
  • Economía
  • Conversiones

Solución

1−cos(x)​=2sin2(x)1​

Solución

x=1.01879…+2πn,x=2π−1.01879…+2πn,x=2.48401…+2πn,x=−2.48401…+2πn
+1
Grados
x=58.37265…∘+360∘n,x=301.62734…∘+360∘n,x=142.32379…∘+360∘n,x=−142.32379…∘+360∘n
Pasos de solución
1−cos(x)​=2sin2(x)1​
Restar 2sin2(x)1​ de ambos lados1−cos(x)​−2sin2(x)1​=0
Simplificar 1−cos(x)​−2sin2(x)1​:2sin2(x)2sin2(x)1−cos(x)​−1​
1−cos(x)​−2sin2(x)1​
Convertir a fracción: −cos(x)+1​=2sin2(x)1−cos(x)​⋅2sin2(x)​=2sin2(x)1−cos(x)​⋅2sin2(x)​−2sin2(x)1​
Ya que los denominadores son iguales, combinar las fracciones: ca​±cb​=ca±b​=2sin2(x)1−cos(x)​⋅2sin2(x)−1​
2sin2(x)2sin2(x)1−cos(x)​−1​=0
g(x)f(x)​=0⇒f(x)=02sin2(x)1−cos(x)​−1=0
Re-escribir usando identidades trigonométricas
−1+2sin2(x)1−cos(x)​
Utilizar la identidad pitagórica: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−1+2(1−cos2(x))1−cos(x)​
−1+(1−cos2(x))⋅21−cos(x)​=0
Usando el método de sustitución
−1+(1−cos2(x))⋅21−cos(x)​=0
Sea: cos(x)=u−1+(1−u2)⋅21−u​=0
−1+(1−u2)⋅21−u​=0:u≈0.52439…,u≈−0.79147…
−1+(1−u2)⋅21−u​=0
Desarrollar −1+(1−u2)⋅21−u​:−1+21−u​−21−u​u2
−1+(1−u2)⋅21−u​
=−1+21−u​(1−u2)
Expandir 21−u​(1−u2):21−u​−21−u​u2
21−u​(1−u2)
Poner los parentesis utilizando: a(b−c)=ab−aca=21−u​,b=1,c=u2=21−u​⋅1−21−u​u2
=2⋅1⋅1−u​−21−u​u2
Multiplicar los numeros: 2⋅1=2=21−u​−21−u​u2
=−1+21−u​−21−u​u2
−1+21−u​−21−u​u2=0
Desplace 1a la derecha
−1+21−u​−21−u​u2=0
Sumar 1 a ambos lados−1+21−u​−21−u​u2+1=0+1
Simplificar21−u​−21−u​u2=1
21−u​−21−u​u2=1
Factorizar 21−u​−21−u​u2:21−u​(1−u2)
21−u​−21−u​u2
Reescribir como=1⋅21−u​−21−u​u2
Factorizar el termino común 21−u​=21−u​(1−u2)
21−u​(1−u2)=1
Elevar al cuadrado ambos lados:4−4u−8u2+8u3+4u4−4u5=1
21−u​(1−u2)=1
(21−u​(1−u2))2=12
Desarrollar (21−u​(1−u2))2:4−4u−8u2+8u3+4u4−4u5
(21−u​(1−u2))2
Aplicar las leyes de los exponentes: (a⋅b)n=anbn=22(1−u​)2(−u2+1)2
(1−u​)2:1−u
Aplicar las leyes de los exponentes: a​=a21​=((1−u)21​)2
Aplicar las leyes de los exponentes: (ab)c=abc=(1−u)21​⋅2
21​⋅2=1
21​⋅2
Multiplicar fracciones: a⋅cb​=ca⋅b​=21⋅2​
Eliminar los terminos comunes: 2=1
=1−u
=22(1−u)(1−u2)2
(1−u2)2=1−2u2+u4
(1−u2)2
Aplicar la formula del binomio al cuadrado: (a−b)2=a2−2ab+b2a=1,b=u2
=12−2⋅1⋅u2+(u2)2
Simplificar 12−2⋅1⋅u2+(u2)2:1−2u2+u4
12−2⋅1⋅u2+(u2)2
Aplicar la regla 1a=112=1=1−2⋅1⋅u2+(u2)2
2⋅1⋅u2=2u2
2⋅1⋅u2
Multiplicar los numeros: 2⋅1=2=2u2
(u2)2=u4
(u2)2
Aplicar las leyes de los exponentes: (ab)c=abc=u2⋅2
Multiplicar los numeros: 2⋅2=4=u4
=1−2u2+u4
=1−2u2+u4
=22(1−u)(u4−2u2+1)
22=4=4(1−u)(u4−2u2+1)
Aplicar la siguiente regla de productos notables=4(1−u)⋅1+4(1−u)(−2u2)+4(1−u)u4
Aplicar las reglas de los signos+(−a)=−a=4⋅1⋅(1−u)−4⋅2(1−u)u2+4(1−u)u4
Simplificar 4⋅1⋅1−u−4⋅21−uu2+41−uu4:41−u−81−uu2+41−uu4
4⋅1⋅(1−u)−4⋅2(1−u)u2+4(1−u)u4
Multiplicar los numeros: 4⋅1=4=4(1−u)−4⋅2(1−u)u2+4(1−u)u4
Multiplicar los numeros: 4⋅2=8=4(1−u)−8(1−u)u2+4(1−u)u4
=4(1−u)−8(1−u)u2+4(1−u)u4
Desarrollar 4(1−u)−8(1−u)u2+4(1−u)u4:4−4u−8u2+8u3+4u4−4u5
4(1−u)−8(1−u)u2+4(1−u)u4
=4(1−u)−8u2(1−u)+4u4(1−u)
Expandir 4(1−u):4−4u
4(1−u)
Poner los parentesis utilizando: a(b−c)=ab−aca=4,b=1,c=u=4⋅1−4u
Multiplicar los numeros: 4⋅1=4=4−4u
=4−4u−8(1−u)u2+4(1−u)u4
Expandir −8u2(1−u):−8u2+8u3
−8u2(1−u)
Poner los parentesis utilizando: a(b−c)=ab−aca=−8u2,b=1,c=u=−8u2⋅1−(−8u2)u
Aplicar las reglas de los signos−(−a)=a=−8⋅1⋅u2+8u2u
Simplificar −8⋅1⋅u2+8u2u:−8u2+8u3
−8⋅1⋅u2+8u2u
8⋅1⋅u2=8u2
8⋅1⋅u2
Multiplicar los numeros: 8⋅1=8=8u2
8u2u=8u3
8u2u
Aplicar las leyes de los exponentes: ab⋅ac=ab+cu2u=u2+1=8u2+1
Sumar: 2+1=3=8u3
=−8u2+8u3
=−8u2+8u3
=4−4u−8u2+8u3+4(1−u)u4
Expandir 4u4(1−u):4u4−4u5
4u4(1−u)
Poner los parentesis utilizando: a(b−c)=ab−aca=4u4,b=1,c=u=4u4⋅1−4u4u
=4⋅1⋅u4−4u4u
Simplificar 4⋅1⋅u4−4u4u:4u4−4u5
4⋅1⋅u4−4u4u
4⋅1⋅u4=4u4
4⋅1⋅u4
Multiplicar los numeros: 4⋅1=4=4u4
4u4u=4u5
4u4u
Aplicar las leyes de los exponentes: ab⋅ac=ab+cu4u=u4+1=4u4+1
Sumar: 4+1=5=4u5
=4u4−4u5
=4u4−4u5
=4−4u−8u2+8u3+4u4−4u5
=4−4u−8u2+8u3+4u4−4u5
Desarrollar 12:1
12
Aplicar la regla 1a=1=1
4−4u−8u2+8u3+4u4−4u5=1
4−4u−8u2+8u3+4u4−4u5=1
Resolver 4−4u−8u2+8u3+4u4−4u5=1:u≈−1.15774…,u≈0.52439…,u≈−0.79147…
4−4u−8u2+8u3+4u4−4u5=1
Desplace 1a la izquierda
4−4u−8u2+8u3+4u4−4u5=1
Restar 1 de ambos lados4−4u−8u2+8u3+4u4−4u5−1=1−1
Simplificar−4u5+4u4+8u3−8u2−4u+3=0
−4u5+4u4+8u3−8u2−4u+3=0
Encontrar una solución para −4u5+4u4+8u3−8u2−4u+3=0 utilizando el método de Newton-Raphson:u≈−1.15774…
−4u5+4u4+8u3−8u2−4u+3=0
Definición del método de Newton-Raphson
f(u)=−4u5+4u4+8u3−8u2−4u+3
Hallar f′(u):−20u4+16u3+24u2−16u−4
dud​(−4u5+4u4+8u3−8u2−4u+3)
Aplicar la regla de la suma/diferencia: (f±g)′=f′±g′=−dud​(4u5)+dud​(4u4)+dud​(8u3)−dud​(8u2)−dud​(4u)+dud​(3)
dud​(4u5)=20u4
dud​(4u5)
Sacar la constante: (a⋅f)′=a⋅f′=4dud​(u5)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=4⋅5u5−1
Simplificar=20u4
dud​(4u4)=16u3
dud​(4u4)
Sacar la constante: (a⋅f)′=a⋅f′=4dud​(u4)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=4⋅4u4−1
Simplificar=16u3
dud​(8u3)=24u2
dud​(8u3)
Sacar la constante: (a⋅f)′=a⋅f′=8dud​(u3)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=8⋅3u3−1
Simplificar=24u2
dud​(8u2)=16u
dud​(8u2)
Sacar la constante: (a⋅f)′=a⋅f′=8dud​(u2)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=8⋅2u2−1
Simplificar=16u
dud​(4u)=4
dud​(4u)
Sacar la constante: (a⋅f)′=a⋅f′=4dudu​
Aplicar la regla de derivación: dudu​=1=4⋅1
Simplificar=4
dud​(3)=0
dud​(3)
Derivada de una constante: dxd​(a)=0=0
=−20u4+16u3+24u2−16u−4+0
Simplificar=−20u4+16u3+24u2−16u−4
Sea u0​=2Calcular un+1​ hasta que Δun+1​<0.000001
u1​=1.71969…:Δu1​=0.28030…
f(u0​)=−4⋅25+4⋅24+8⋅23−8⋅22−4⋅2+3=−37f′(u0​)=−20⋅24+16⋅23+24⋅22−16⋅2−4=−132u1​=1.71969…
Δu1​=∣1.71969…−2∣=0.28030…Δu1​=0.28030…
u2​=1.49728…:Δu2​=0.22241…
f(u1​)=−4⋅1.71969…5+4⋅1.71969…4+8⋅1.71969…3−8⋅1.71969…2−4⋅1.71969…+3=−12.02935…f′(u1​)=−20⋅1.71969…4+16⋅1.71969…3+24⋅1.71969…2−16⋅1.71969…−4=−54.08571…u2​=1.49728…
Δu2​=∣1.49728…−1.71969…∣=0.22241…Δu2​=0.22241…
u3​=1.30324…:Δu3​=0.19403…
f(u2​)=−4⋅1.49728…5+4⋅1.49728…4+8⋅1.49728…3−8⋅1.49728…2−4⋅1.49728…+3=−4.06767…f′(u2​)=−20⋅1.49728…4+16⋅1.49728…3+24⋅1.49728…2−16⋅1.49728…−4=−20.96340…u3​=1.30324…
Δu3​=∣1.30324…−1.49728…∣=0.19403…Δu3​=0.19403…
u4​=1.05328…:Δu4​=0.24996…
f(u3​)=−4⋅1.30324…5+4⋅1.30324…4+8⋅1.30324…3−8⋅1.30324…2−4⋅1.30324…+3=−1.59173…f′(u3​)=−20⋅1.30324…4+16⋅1.30324…3+24⋅1.30324…2−16⋅1.30324…−4=−6.36786…u4​=1.05328…
Δu4​=∣1.05328…−1.30324…∣=0.24996…Δu4​=0.24996…
u5​=−5.80799…:Δu5​=6.86128…
f(u4​)=−4⋅1.05328…5+4⋅1.05328…4+8⋅1.05328…3−8⋅1.05328…2−4⋅1.05328…+3=−1.00255…f′(u4​)=−20⋅1.05328…4+16⋅1.05328…3+24⋅1.05328…2−16⋅1.05328…−4=−0.14611…u5​=−5.80799…
Δu5​=∣−5.80799…−1.05328…∣=6.86128…Δu5​=6.86128…
u6​=−4.64067…:Δu6​=1.16732…
f(u5​)=−4(−5.80799…)5+4(−5.80799…)4+8(−5.80799…)3−8(−5.80799…)2−4(−5.80799…)+3=29176.40873…f′(u5​)=−20(−5.80799…)4+16(−5.80799…)3+24(−5.80799…)2−16(−5.80799…)−4=−24994.29514…u6​=−4.64067…
Δu6​=∣−4.64067…−(−5.80799…)∣=1.16732…Δu6​=1.16732…
u7​=−3.71587…:Δu7​=0.92480…
f(u6​)=−4(−4.64067…)5+4(−4.64067…)4+8(−4.64067…)3−8(−4.64067…)2−4(−4.64067…)+3=9514.18126…f′(u6​)=−20(−4.64067…)4+16(−4.64067…)3+24(−4.64067…)2−16(−4.64067…)−4=−10287.81312…u7​=−3.71587…
Δu7​=∣−3.71587…−(−4.64067…)∣=0.92480…Δu7​=0.92480…
u8​=−2.98754…:Δu8​=0.72832…
f(u7​)=−4(−3.71587…)5+4(−3.71587…)4+8(−3.71587…)3−8(−3.71587…)2−4(−3.71587…)+3=3093.32373…f′(u7​)=−20(−3.71587…)4+16(−3.71587…)3+24(−3.71587…)2−16(−3.71587…)−4=−4247.14664…u8​=−2.98754…
Δu8​=∣−2.98754…−(−3.71587…)∣=0.72832…Δu8​=0.72832…
u9​=−2.41948…:Δu9​=0.56806…
f(u8​)=−4(−2.98754…)5+4(−2.98754…)4+8(−2.98754…)3−8(−2.98754…)2−4(−2.98754…)+3=1000.86681…f′(u8​)=−20(−2.98754…)4+16(−2.98754…)3+24(−2.98754…)2−16(−2.98754…)−4=−1761.89279…u9​=−2.41948…
Δu9​=∣−2.41948…−(−2.98754…)∣=0.56806…Δu9​=0.56806…
u10​=−1.98344…:Δu10​=0.43603…
f(u9​)=−4(−2.41948…)5+4(−2.41948…)4+8(−2.41948…)3−8(−2.41948…)2−4(−2.41948…)+3=321.25479…f′(u9​)=−20(−2.41948…)4+16(−2.41948…)3+24(−2.41948…)2−16(−2.41948…)−4=−736.76863…u10​=−1.98344…
Δu10​=∣−1.98344…−(−2.41948…)∣=0.43603…Δu10​=0.43603…
u11​=−1.65761…:Δu11​=0.32583…
f(u10​)=−4(−1.98344…)5+4(−1.98344…)4+8(−1.98344…)3−8(−1.98344…)2−4(−1.98344…)+3=101.73511…f′(u10​)=−20(−1.98344…)4+16(−1.98344…)3+24(−1.98344…)2−16(−1.98344…)−4=−312.23335…u11​=−1.65761…
Δu11​=∣−1.65761…−(−1.98344…)∣=0.32583…Δu11​=0.32583…
u12​=−1.42520…:Δu12​=0.23241…
f(u11​)=−4(−1.65761…)5+4(−1.65761…)4+8(−1.65761…)3−8(−1.65761…)2−4(−1.65761…)+3=31.47022…f′(u11​)=−20(−1.65761…)4+16(−1.65761…)3+24(−1.65761…)2−16(−1.65761…)−4=−135.40437…u12​=−1.42520…
Δu12​=∣−1.42520…−(−1.65761…)∣=0.23241…Δu12​=0.23241…
u13​=−1.27318…:Δu13​=0.15201…
f(u12​)=−4(−1.42520…)5+4(−1.42520…)4+8(−1.42520…)3−8(−1.42520…)2−4(−1.42520…)+3=9.31556…f′(u12​)=−20(−1.42520…)4+16(−1.42520…)3+24(−1.42520…)2−16(−1.42520…)−4=−61.28130…u13​=−1.27318…
Δu13​=∣−1.27318…−(−1.42520…)∣=0.15201…Δu13​=0.15201…
u14​=−1.19046…:Δu14​=0.08272…
f(u13​)=−4(−1.27318…)5+4(−1.27318…)4+8(−1.27318…)3−8(−1.27318…)2−4(−1.27318…)+3=2.50663…f′(u13​)=−20(−1.27318…)4+16(−1.27318…)3+24(−1.27318…)2−16(−1.27318…)−4=−30.29974…u14​=−1.19046…
Δu14​=∣−1.19046…−(−1.27318…)∣=0.08272…Δu14​=0.08272…
u15​=−1.16145…:Δu15​=0.02900…
f(u14​)=−4(−1.19046…)5+4(−1.19046…)4+8(−1.19046…)3−8(−1.19046…)2−4(−1.19046…)+3=0.52502…f′(u14​)=−20(−1.19046…)4+16(−1.19046…)3+24(−1.19046…)2−16(−1.19046…)−4=−18.10266…u15​=−1.16145…
Δu15​=∣−1.16145…−(−1.19046…)∣=0.02900…Δu15​=0.02900…
u16​=−1.15780…:Δu16​=0.00365…
f(u15​)=−4(−1.16145…)5+4(−1.16145…)4+8(−1.16145…)3−8(−1.16145…)2−4(−1.16145…)+3=0.05297…f′(u15​)=−20(−1.16145…)4+16(−1.16145…)3+24(−1.16145…)2−16(−1.16145…)−4=−14.50486…u16​=−1.15780…
Δu16​=∣−1.15780…−(−1.16145…)∣=0.00365…Δu16​=0.00365…
u17​=−1.15774…:Δu17​=0.00005…
f(u16​)=−4(−1.15780…)5+4(−1.15780…)4+8(−1.15780…)3−8(−1.15780…)2−4(−1.15780…)+3=0.00078…f′(u16​)=−20(−1.15780…)4+16(−1.15780…)3+24(−1.15780…)2−16(−1.15780…)−4=−14.07518…u17​=−1.15774…
Δu17​=∣−1.15774…−(−1.15780…)∣=0.00005…Δu17​=0.00005…
u18​=−1.15774…:Δu18​=1.29677E−8
f(u17​)=−4(−1.15774…)5+4(−1.15774…)4+8(−1.15774…)3−8(−1.15774…)2−4(−1.15774…)+3=1.82438E−7f′(u17​)=−20(−1.15774…)4+16(−1.15774…)3+24(−1.15774…)2−16(−1.15774…)−4=−14.06865…u18​=−1.15774…
Δu18​=∣−1.15774…−(−1.15774…)∣=1.29677E−8Δu18​=1.29677E−8
u≈−1.15774…
Aplicar la división larga Equation0:u+1.15774…−4u5+4u4+8u3−8u2−4u+3​=−4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…
−4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…≈0
Encontrar una solución para −4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…=0 utilizando el método de Newton-Raphson:u≈0.52439…
−4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…=0
Definición del método de Newton-Raphson
f(u)=−4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…
Hallar f′(u):−16u3+25.89299…u2−3.98507…u−5.69314…
dud​(−4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…)
Aplicar la regla de la suma/diferencia: (f±g)′=f′±g′=−dud​(4u4)+dud​(8.63099…u3)−dud​(1.99253…u2)−dud​(5.69314…u)+dud​(2.59123…)
dud​(4u4)=16u3
dud​(4u4)
Sacar la constante: (a⋅f)′=a⋅f′=4dud​(u4)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=4⋅4u4−1
Simplificar=16u3
dud​(8.63099…u3)=25.89299…u2
dud​(8.63099…u3)
Sacar la constante: (a⋅f)′=a⋅f′=8.63099…dud​(u3)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=8.63099…⋅3u3−1
Simplificar=25.89299…u2
dud​(1.99253…u2)=3.98507…u
dud​(1.99253…u2)
Sacar la constante: (a⋅f)′=a⋅f′=1.99253…dud​(u2)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=1.99253…⋅2u2−1
Simplificar=3.98507…u
dud​(5.69314…u)=5.69314…
dud​(5.69314…u)
Sacar la constante: (a⋅f)′=a⋅f′=5.69314…dudu​
Aplicar la regla de derivación: dudu​=1=5.69314…⋅1
Simplificar=5.69314…
dud​(2.59123…)=0
dud​(2.59123…)
Derivada de una constante: dxd​(a)=0=0
=−16u3+25.89299…u2−3.98507…u−5.69314…+0
Simplificar=−16u3+25.89299…u2−3.98507…u−5.69314…
Sea u0​=0Calcular un+1​ hasta que Δun+1​<0.000001
u1​=0.45514…:Δu1​=0.45514…
f(u0​)=−4⋅04+8.63099…⋅03−1.99253…⋅02−5.69314…⋅0+2.59123…=2.59123…f′(u0​)=−16⋅03+25.89299…⋅02−3.98507…⋅0−5.69314…=−5.69314…u1​=0.45514…
Δu1​=∣0.45514…−0∣=0.45514…Δu1​=0.45514…
u2​=0.51796…:Δu2​=0.06281…
f(u1​)=−4⋅0.45514…4+8.63099…⋅0.45514…3−1.99253…⋅0.45514…2−5.69314…⋅0.45514…+2.59123…=0.22937…f′(u1​)=−16⋅0.45514…3+25.89299…⋅0.45514…2−3.98507…⋅0.45514…−5.69314…=−3.65154…u2​=0.51796…
Δu2​=∣0.51796…−0.45514…∣=0.06281…Δu2​=0.06281…
u3​=0.52432…:Δu3​=0.00635…
f(u2​)=−4⋅0.51796…4+8.63099…⋅0.51796…3−1.99253…⋅0.51796…2−5.69314…⋅0.51796…+2.59123…=0.01929…f′(u2​)=−16⋅0.51796…3+25.89299…⋅0.51796…2−3.98507…⋅0.51796…−5.69314…=−3.03391…u3​=0.52432…
Δu3​=∣0.52432…−0.51796…∣=0.00635…Δu3​=0.00635…
u4​=0.52439…:Δu4​=0.00006…
f(u3​)=−4⋅0.52432…4+8.63099…⋅0.52432…3−1.99253…⋅0.52432…2−5.69314…⋅0.52432…+2.59123…=0.00020…f′(u3​)=−16⋅0.52432…3+25.89299…⋅0.52432…2−3.98507…⋅0.52432…−5.69314…=−2.97053…u4​=0.52439…
Δu4​=∣0.52439…−0.52432…∣=0.00006…Δu4​=0.00006…
u5​=0.52439…:Δu5​=7.72366E−9
f(u4​)=−4⋅0.52439…4+8.63099…⋅0.52439…3−1.99253…⋅0.52439…2−5.69314…⋅0.52439…+2.59123…=2.29382E−8f′(u4​)=−16⋅0.52439…3+25.89299…⋅0.52439…2−3.98507…⋅0.52439…−5.69314…=−2.96985…u5​=0.52439…
Δu5​=∣0.52439…−0.52439…∣=7.72366E−9Δu5​=7.72366E−9
u≈0.52439…
Aplicar la división larga Equation0:u−0.52439…−4u4+8.63099…u3−1.99253…u2−5.69314…u+2.59123…​=−4u3+6.53342…u2+1.43354…u−4.94140…
−4u3+6.53342…u2+1.43354…u−4.94140…≈0
Encontrar una solución para −4u3+6.53342…u2+1.43354…u−4.94140…=0 utilizando el método de Newton-Raphson:u≈−0.79147…
−4u3+6.53342…u2+1.43354…u−4.94140…=0
Definición del método de Newton-Raphson
f(u)=−4u3+6.53342…u2+1.43354…u−4.94140…
Hallar f′(u):−12u2+13.06685…u+1.43354…
dud​(−4u3+6.53342…u2+1.43354…u−4.94140…)
Aplicar la regla de la suma/diferencia: (f±g)′=f′±g′=−dud​(4u3)+dud​(6.53342…u2)+dud​(1.43354…u)−dud​(4.94140…)
dud​(4u3)=12u2
dud​(4u3)
Sacar la constante: (a⋅f)′=a⋅f′=4dud​(u3)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=4⋅3u3−1
Simplificar=12u2
dud​(6.53342…u2)=13.06685…u
dud​(6.53342…u2)
Sacar la constante: (a⋅f)′=a⋅f′=6.53342…dud​(u2)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=6.53342…⋅2u2−1
Simplificar=13.06685…u
dud​(1.43354…u)=1.43354…
dud​(1.43354…u)
Sacar la constante: (a⋅f)′=a⋅f′=1.43354…dudu​
Aplicar la regla de derivación: dudu​=1=1.43354…⋅1
Simplificar=1.43354…
dud​(4.94140…)=0
dud​(4.94140…)
Derivada de una constante: dxd​(a)=0=0
=−12u2+13.06685…u+1.43354…−0
Simplificar=−12u2+13.06685…u+1.43354…
Sea u0​=3Calcular un+1​ hasta que Δun+1​<0.000001
u1​=2.26016…:Δu1​=0.73983…
f(u0​)=−4⋅33+6.53342…⋅32+1.43354…⋅3−4.94140…=−49.83990…f′(u0​)=−12⋅32+13.06685…⋅3+1.43354…=−67.36588…u1​=2.26016…
Δu1​=∣2.26016…−3∣=0.73983…Δu1​=0.73983…
u2​=1.78183…:Δu2​=0.47832…
f(u1​)=−4⋅2.26016…3+6.53342…⋅2.26016…2+1.43354…⋅2.26016…−4.94140…=−14.50903…f′(u1​)=−12⋅2.26016…2+13.06685…⋅2.26016…+1.43354…=−30.33318…u2​=1.78183…
Δu2​=∣1.78183…−2.26016…∣=0.47832…Δu2​=0.47832…
u3​=1.46256…:Δu3​=0.31927…
f(u2​)=−4⋅1.78183…3+6.53342…⋅1.78183…2+1.43354…⋅1.78183…−4.94140…=−4.27274…f′(u2​)=−12⋅1.78183…2+13.06685…⋅1.78183…+1.43354…=−13.38281…u3​=1.46256…
Δu3​=∣1.46256…−1.78183…∣=0.31927…Δu3​=0.31927…
u4​=1.19261…:Δu4​=0.26995…
f(u3​)=−4⋅1.46256…3+6.53342…⋅1.46256…2+1.43354…⋅1.46256…−4.94140…=−1.38340…f′(u3​)=−12⋅1.46256…2+13.06685…⋅1.46256…+1.43354…=−5.12454…u4​=1.19261…
Δu4​=∣1.19261…−1.46256…∣=0.26995…Δu4​=0.26995…
u5​=−13.10640…:Δu5​=14.29901…
f(u4​)=−4⋅1.19261…3+6.53342…⋅1.19261…2+1.43354…⋅1.19261…−4.94140…=−0.72421…f′(u4​)=−12⋅1.19261…2+13.06685…⋅1.19261…+1.43354…=−0.05064…u5​=−13.10640…
Δu5​=∣−13.10640…−1.19261…∣=14.29901…Δu5​=14.29901…
u6​=−8.57776…:Δu6​=4.52864…
f(u5​)=−4(−13.10640…)3+6.53342…(−13.10640…)2+1.43354…(−13.10640…)−4.94140…=10104.13392…f′(u5​)=−12(−13.10640…)2+13.06685…(−13.10640…)+1.43354…=−2231.16096…u6​=−8.57776…
Δu6​=∣−8.57776…−(−13.10640…)∣=4.52864…Δu6​=4.52864…
u7​=−5.57045…:Δu7​=3.00730…
f(u6​)=−4(−8.57776…)3+6.53342…(−8.57776…)2+1.43354…(−8.57776…)−4.94140…=2988.01817…f′(u6​)=−12(−8.57776…)2+13.06685…(−8.57776…)+1.43354…=−993.58713…u7​=−5.57045…
Δu7​=∣−5.57045…−(−8.57776…)∣=3.00730…Δu7​=3.00730…
u8​=−3.58447…:Δu8​=1.98598…
f(u7​)=−4(−5.57045…)3+6.53342…(−5.57045…)2+1.43354…(−5.57045…)−4.94140…=881.21142…f′(u7​)=−12(−5.57045…)2+13.06685…(−5.57045…)+1.43354…=−443.71510…u8​=−3.58447…
Δu8​=∣−3.58447…−(−5.57045…)∣=1.98598…Δu8​=1.98598…
u9​=−2.29137…:Δu9​=1.29310…
f(u8​)=−4(−3.58447…)3+6.53342…(−3.58447…)2+1.43354…(−3.58447…)−4.94140…=258.08452…f′(u8​)=−12(−3.58447…)2+13.06685…(−3.58447…)+1.43354…=−199.58579…u9​=−2.29137…
Δu9​=∣−2.29137…−(−3.58447…)∣=1.29310…Δu9​=1.29310…
u10​=−1.48056…:Δu10​=0.81081…
f(u9​)=−4(−2.29137…)3+6.53342…(−2.29137…)2+1.43354…(−2.29137…)−4.94140…=74.19938…f′(u9​)=−12(−2.29137…)2+13.06685…(−2.29137…)+1.43354…=−91.51226…u10​=−1.48056…
Δu10​=∣−1.48056…−(−2.29137…)∣=0.81081…Δu10​=0.81081…
u11​=−1.02282…:Δu11​=0.45773…
f(u10​)=−4(−1.48056…)3+6.53342…(−1.48056…)2+1.43354…(−1.48056…)−4.94140…=20.23972…f′(u10​)=−12(−1.48056…)2+13.06685…(−1.48056…)+1.43354…=−44.21745…u11​=−1.02282…
Δu11​=∣−1.02282…−(−1.48056…)∣=0.45773…Δu11​=0.45773…
u12​=−0.83056…:Δu12​=0.19226…
f(u11​)=−4(−1.02282…)3+6.53342…(−1.02282…)2+1.43354…(−1.02282…)−4.94140…=4.70771…f′(u11​)=−12(−1.02282…)2+13.06685…(−1.02282…)+1.43354…=−24.48576…u12​=−0.83056…
Δu12​=∣−0.83056…−(−1.02282…)∣=0.19226…Δu12​=0.19226…
u13​=−0.79288…:Δu13​=0.03767…
f(u12​)=−4(−0.83056…)3+6.53342…(−0.83056…)2+1.43354…(−0.83056…)−4.94140…=0.66678…f′(u12​)=−12(−0.83056…)2+13.06685…(−0.83056…)+1.43354…=−17.69741…u13​=−0.79288…
Δu13​=∣−0.79288…−(−0.83056…)∣=0.03767…Δu13​=0.03767…
u14​=−0.79147…:Δu14​=0.00140…
f(u13​)=−4(−0.79288…)3+6.53342…(−0.79288…)2+1.43354…(−0.79288…)−4.94140…=0.0232093455f′(u13​)=−12(−0.79288…)2+13.06685…(−0.79288…)+1.43354…=−16.47108…u14​=−0.79147…
Δu14​=∣−0.79147…−(−0.79288…)∣=0.00140…Δu14​=0.00140…
u15​=−0.79147…:Δu15​=1.9392E−6
f(u14​)=−4(−0.79147…)3+6.53342…(−0.79147…)2+1.43354…(−0.79147…)−4.94140…=0.00003…f′(u14​)=−12(−0.79147…)2+13.06685…(−0.79147…)+1.43354…=−16.42588…u15​=−0.79147…
Δu15​=∣−0.79147…−(−0.79147…)∣=1.9392E−6Δu15​=1.9392E−6
u16​=−0.79147…:Δu16​=3.6702E−12
f(u15​)=−4(−0.79147…)3+6.53342…(−0.79147…)2+1.43354…(−0.79147…)−4.94140…=6.0286E−11f′(u15​)=−12(−0.79147…)2+13.06685…(−0.79147…)+1.43354…=−16.42581…u16​=−0.79147…
Δu16​=∣−0.79147…−(−0.79147…)∣=3.6702E−12Δu16​=3.6702E−12
u≈−0.79147…
Aplicar la división larga Equation0:u+0.79147…−4u3+6.53342…u2+1.43354…u−4.94140…​=−4u2+9.69933…u−6.24326…
−4u2+9.69933…u−6.24326…≈0
Encontrar una solución para −4u2+9.69933…u−6.24326…=0 utilizando el método de Newton-Raphson:Sin solución para u∈R
−4u2+9.69933…u−6.24326…=0
Definición del método de Newton-Raphson
f(u)=−4u2+9.69933…u−6.24326…
Hallar f′(u):−8u+9.69933…
dud​(−4u2+9.69933…u−6.24326…)
Aplicar la regla de la suma/diferencia: (f±g)′=f′±g′=−dud​(4u2)+dud​(9.69933…u)−dud​(6.24326…)
dud​(4u2)=8u
dud​(4u2)
Sacar la constante: (a⋅f)′=a⋅f′=4dud​(u2)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=4⋅2u2−1
Simplificar=8u
dud​(9.69933…u)=9.69933…
dud​(9.69933…u)
Sacar la constante: (a⋅f)′=a⋅f′=9.69933…dudu​
Aplicar la regla de derivación: dudu​=1=9.69933…⋅1
Simplificar=9.69933…
dud​(6.24326…)=0
dud​(6.24326…)
Derivada de una constante: dxd​(a)=0=0
=−8u+9.69933…−0
Simplificar=−8u+9.69933…
Sea u0​=1Calcular un+1​ hasta que Δun+1​<0.000001
u1​=1.32008…:Δu1​=0.32008…
f(u0​)=−4⋅12+9.69933…⋅1−6.24326…=−0.54392…f′(u0​)=−8⋅1+9.69933…=1.69933…u1​=1.32008…
Δu1​=∣1.32008…−1∣=0.32008…Δu1​=0.32008…
u2​=0.84428…:Δu2​=0.47579…
f(u1​)=−4⋅1.32008…2+9.69933…⋅1.32008…−6.24326…=−0.40980…f′(u1​)=−8⋅1.32008…+9.69933…=−0.86130…u2​=0.84428…
Δu2​=∣0.84428…−1.32008…∣=0.47579…Δu2​=0.47579…
u3​=1.15175…:Δu3​=0.30747…
f(u2​)=−4⋅0.84428…2+9.69933…⋅0.84428…−6.24326…=−0.90553…f′(u2​)=−8⋅0.84428…+9.69933…=2.94507…u3​=1.15175…
Δu3​=∣1.15175…−0.84428…∣=0.30747…Δu3​=0.30747…
u4​=1.93099…:Δu4​=0.77924…
f(u3​)=−4⋅1.15175…2+9.69933…⋅1.15175…−6.24326…=−0.37815…f′(u3​)=−8⋅1.15175…+9.69933…=0.48529…u4​=1.93099…
Δu4​=∣1.93099…−1.15175…∣=0.77924…Δu4​=0.77924…
u5​=1.50848…:Δu5​=0.42251…
f(u4​)=−4⋅1.93099…2+9.69933…⋅1.93099…−6.24326…=−2.42887…f′(u4​)=−8⋅1.93099…+9.69933…=−5.74865…u5​=1.50848…
Δu5​=∣1.50848…−1.93099…∣=0.42251…Δu5​=0.42251…
u6​=1.20700…:Δu6​=0.30147…
f(u5​)=−4⋅1.50848…2+9.69933…⋅1.50848…−6.24326…=−0.71406…f′(u5​)=−8⋅1.50848…+9.69933…=−2.36855…u6​=1.20700…
Δu6​=∣1.20700…−1.50848…∣=0.30147…Δu6​=0.30147…
u7​=9.60809…:Δu7​=8.40108…
f(u6​)=−4⋅1.20700…2+9.69933…⋅1.20700…−6.24326…=−0.36355…f′(u6​)=−8⋅1.20700…+9.69933…=0.04327…u7​=9.60809…
Δu7​=∣9.60809…−1.20700…∣=8.40108…Δu7​=8.40108…
u8​=5.40484…:Δu8​=4.20324…
f(u7​)=−4⋅9.60809…2+9.69933…⋅9.60809…−6.24326…=−282.31282…f′(u7​)=−8⋅9.60809…+9.69933…=−67.16539…u8​=5.40484…
Δu8​=∣5.40484…−9.60809…∣=4.20324…Δu8​=4.20324…
u9​=3.29779…:Δu9​=2.10704…
f(u8​)=−4⋅5.40484…2+9.69933…⋅5.40484…−6.24326…=−70.66918…f′(u8​)=−8⋅5.40484…+9.69933…=−33.53940…u9​=3.29779…
Δu9​=∣3.29779…−5.40484…∣=2.10704…Δu9​=2.10704…
u10​=2.23332…:Δu10​=1.06447…
f(u9​)=−4⋅3.29779…2+9.69933…⋅3.29779…−6.24326…=−17.75862…f′(u9​)=−8⋅3.29779…+9.69933…=−16.68301…u10​=2.23332…
Δu10​=∣2.23332…−3.29779…∣=1.06447…Δu10​=1.06447…
u11​=1.67836…:Δu11​=0.55495…
f(u10​)=−4⋅2.23332…2+9.69933…⋅2.23332…−6.24326…=−4.53241…f′(u10​)=−8⋅2.23332…+9.69933…=−8.16722…u11​=1.67836…
Δu11​=∣1.67836…−2.23332…∣=0.55495…Δu11​=0.55495…
u12​=1.34789…:Δu12​=0.33047…
f(u11​)=−4⋅1.67836…2+9.69933…⋅1.67836…−6.24326…=−1.23188…f′(u11​)=−8⋅1.67836…+9.69933…=−3.72761…u12​=1.34789…
Δu12​=∣1.34789…−1.67836…∣=0.33047…Δu12​=0.33047…
u13​=0.94482…:Δu13​=0.40307…
f(u12​)=−4⋅1.34789…2+9.69933…⋅1.34789…−6.24326…=−0.43685…f′(u12​)=−8⋅1.34789…+9.69933…=−1.08381…u13​=0.94482…
Δu13​=∣0.94482…−1.34789…∣=0.40307…Δu13​=0.40307…
No se puede encontrar solución
Las soluciones sonu≈−1.15774…,u≈0.52439…,u≈−0.79147…
u≈−1.15774…,u≈0.52439…,u≈−0.79147…
Verificar las soluciones:u≈−1.15774…Falso,u≈0.52439…Verdadero,u≈−0.79147…Verdadero
Verificar las soluciones sustituyéndolas en −1+(1−u2)⋅21−u​=0
Quitar las que no concuerden con la ecuación.
Sustituir u≈−1.15774…:Falso
−1+(1−(−1.15774…)2)⋅21−(−1.15774…)​=0
−1+(1−(−1.15774…)2)⋅21−(−1.15774…)​=−2
−1+(1−(−1.15774…)2)⋅21−(−1.15774…)​
Aplicar la regla −(−a)=a=−1+(1−(−1.15774…)2)⋅21+1.15774…​
(1−(−1.15774…)2)⋅21+1.15774…​=−0.68076…2.15774…​
(1−(−1.15774…)2)⋅21+1.15774…​
(−1.15774…)2=1.34038…
(−1.15774…)2
Aplicar las leyes de los exponentes: (−a)n=an,si n es par(−1.15774…)2=1.15774…2=1.15774…2
1.15774…2=1.34038…=1.34038…
=2(1−1.34038…)1+1.15774…​
Sumar: 1+1.15774…=2.15774…=22.15774…​(1−1.34038…)
Restar: 1−1.34038…=−0.34038…=2(−0.34038…)2.15774…​
Quitar los parentesis: (−a)=−a=−0.34038…⋅22.15774…​
Multiplicar los numeros: 0.34038…⋅2=0.68076…=−0.68076…2.15774…​
=−1−0.68076…2.15774…​
0.68076…2.15774…​=1
0.68076…2.15774…​
2.15774…​=1.46892…=0.68076…⋅1.46892…
Multiplicar los numeros: 0.68076…⋅1.46892…=1=1
=−1−1
Restar: −1−1=−2=−2
−2=0
Falso
Sustituir u≈0.52439…:Verdadero
−1+(1−0.52439…2)⋅21−0.52439…​=0
−1+(1−0.52439…2)⋅21−0.52439…​=5.0E−15
−1+(1−0.52439…2)⋅21−0.52439…​
(1−0.52439…2)⋅21−0.52439…​=1.45002…0.47560…​
(1−0.52439…2)⋅21−0.52439…​
0.52439…2=0.27498…=2(1−0.27498…)1−0.52439…​
Restar: 1−0.52439…=0.47560…=20.47560…​(1−0.27498…)
Restar: 1−0.27498…=0.72501…=2⋅0.72501…0.47560…​
Multiplicar los numeros: 0.72501…⋅2=1.45002…=1.45002…0.47560…​
=−1+1.45002…0.47560…​
1.45002…0.47560…​=1
1.45002…0.47560…​
0.47560…​=0.68964…=0.68964…⋅1.45002…
Multiplicar los numeros: 1.45002…⋅0.68964…=1=1
=−1+1
Sumar/restar lo siguiente: −1+1=5.0E−15=5.0E−15
5.0E−15=0
Verdadero
Sustituir u≈−0.79147…:Verdadero
−1+(1−(−0.79147…)2)⋅21−(−0.79147…)​=0
−1+(1−(−0.79147…)2)⋅21−(−0.79147…)​=5.0E−15
−1+(1−(−0.79147…)2)⋅21−(−0.79147…)​
Aplicar la regla −(−a)=a=−1+(1−(−0.79147…)2)⋅21+0.79147…​
(1−(−0.79147…)2)⋅21+0.79147…​=0.74712…1.79147…​
(1−(−0.79147…)2)⋅21+0.79147…​
(−0.79147…)2=0.62643…
(−0.79147…)2
Aplicar las leyes de los exponentes: (−a)n=an,si n es par(−0.79147…)2=0.79147…2=0.79147…2
0.79147…2=0.62643…=0.62643…
=2(1−0.62643…)1+0.79147…​
Sumar: 1+0.79147…=1.79147…=21.79147…​(1−0.62643…)
Restar: 1−0.62643…=0.37356…=2⋅0.37356…1.79147…​
Multiplicar los numeros: 0.37356…⋅2=0.74712…=0.74712…1.79147…​
=−1+0.74712…1.79147…​
0.74712…1.79147…​=1
0.74712…1.79147…​
1.79147…​=1.33846…=0.74712…⋅1.33846…
Multiplicar los numeros: 0.74712…⋅1.33846…=1=1
=−1+1
Sumar/restar lo siguiente: −1+1=5.0E−15=5.0E−15
5.0E−15=0
Verdadero
Las soluciones sonu≈0.52439…,u≈−0.79147…
Sustituir en la ecuación u=cos(x)cos(x)≈0.52439…,cos(x)≈−0.79147…
cos(x)≈0.52439…,cos(x)≈−0.79147…
cos(x)=0.52439…:x=arccos(0.52439…)+2πn,x=2π−arccos(0.52439…)+2πn
cos(x)=0.52439…
Aplicar propiedades trigonométricas inversas
cos(x)=0.52439…
Soluciones generales para cos(x)=0.52439…cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(0.52439…)+2πn,x=2π−arccos(0.52439…)+2πn
x=arccos(0.52439…)+2πn,x=2π−arccos(0.52439…)+2πn
cos(x)=−0.79147…:x=arccos(−0.79147…)+2πn,x=−arccos(−0.79147…)+2πn
cos(x)=−0.79147…
Aplicar propiedades trigonométricas inversas
cos(x)=−0.79147…
Soluciones generales para cos(x)=−0.79147…cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(−0.79147…)+2πn,x=−arccos(−0.79147…)+2πn
x=arccos(−0.79147…)+2πn,x=−arccos(−0.79147…)+2πn
Combinar toda las solucionesx=arccos(0.52439…)+2πn,x=2π−arccos(0.52439…)+2πn,x=arccos(−0.79147…)+2πn,x=−arccos(−0.79147…)+2πn
Mostrar soluciones en forma decimalx=1.01879…+2πn,x=2π−1.01879…+2πn,x=2.48401…+2πn,x=−2.48401…+2πn

Gráfica

Sorry, your browser does not support this application
Ver gráfico interactivo

Ejemplos populares

cos(2x-1)= 1/2tan(a)= 5/3sin(x)=0.43333333cos^6(x)+3cos^3(x)-4=0-sin^2(x)=-1
Herramientas de estudioSolucionador Matemático de IAProblemas popularesHojas de trabajoPracticaHojas de referenciaCalculadorasCalculadora gráficaCalculadora de GeometríaVerificar solución
AplicacionesAplicación Symbolab (Android)Calculadora gráfica (Android)Practica (Android)Aplicación Symbolab (iOS)Calculadora gráfica (iOS)Practica (iOS)Extensión de ChromeSymbolab Math Solver API
EmpresaAcerca de SymbolabBlogAyuda
LegalPrivacidadTérminosPolítica de cookiesConfiguración de CookiesNo vendas ni compartas mi información personalCopyright, Guías Comunitarias, DSA & otros recursos legalesCentro Legal de Learneo
Redes sociales
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024