Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

((1+cot^2(x)))/(cos^2(x))=cot^2(x)

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

cos2(x)(1+cot2(x))​=cot2(x)

Lösung

KeineLo¨sungfu¨rx∈R
Schritte zur Lösung
cos2(x)(1+cot2(x))​=cot2(x)
Subtrahiere cot2(x) von beiden Seitencos2(x)1+cot2(x)​−cot2(x)=0
Vereinfache cos2(x)1+cot2(x)​−cot2(x):cos2(x)1+cot2(x)−cot2(x)cos2(x)​
cos2(x)1+cot2(x)​−cot2(x)
Wandle das Element in einen Bruch um: cot2(x)=cos2(x)cot2(x)cos2(x)​=cos2(x)1+cot2(x)​−cos2(x)cot2(x)cos2(x)​
Da die Nenner gleich sind, fasse die Brüche zusammen.: ca​±cb​=ca±b​=cos2(x)1+cot2(x)−cot2(x)cos2(x)​
cos2(x)1+cot2(x)−cot2(x)cos2(x)​=0
g(x)f(x)​=0⇒f(x)=01+cot2(x)−cot2(x)cos2(x)=0
Umschreiben mit Hilfe von Trigonometrie-Identitäten
1+cot2(x)−cos2(x)cot2(x)
Verwende die Pythagoreische Identität: 1+cot2(x)=csc2(x)=−cos2(x)cot2(x)+csc2(x)
csc2(x)−cos2(x)cot2(x)=0
Faktorisiere csc2(x)−cos2(x)cot2(x):(csc(x)+cos(x)cot(x))(csc(x)−cos(x)cot(x))
csc2(x)−cos2(x)cot2(x)
Schreibe cos2(x)cot2(x)um: (cos(x)cot(x))2
cos2(x)cot2(x)
Wende Exponentenregel an: ambm=(ab)mcos2(x)cot2(x)=(cos(x)cot(x))2=(cos(x)cot(x))2
=csc2(x)−(cos(x)cot(x))2
Wende Formel zur Differenz von zwei Quadraten an:x2−y2=(x+y)(x−y)csc2(x)−(cos(x)cot(x))2=(csc(x)+cos(x)cot(x))(csc(x)−cos(x)cot(x))=(csc(x)+cos(x)cot(x))(csc(x)−cos(x)cot(x))
(csc(x)+cos(x)cot(x))(csc(x)−cos(x)cot(x))=0
Löse jeden Teil einzelncsc(x)+cos(x)cot(x)=0orcsc(x)−cos(x)cot(x)=0
csc(x)+cos(x)cot(x)=0:Keine Lösung
csc(x)+cos(x)cot(x)=0
Drücke mit sin, cos aus
csc(x)+cos(x)cot(x)
Verwende die grundlegende trigonometrische Identität: csc(x)=sin(x)1​=sin(x)1​+cos(x)cot(x)
Verwende die grundlegende trigonometrische Identität: cot(x)=sin(x)cos(x)​=sin(x)1​+cos(x)sin(x)cos(x)​
Vereinfache sin(x)1​+cos(x)sin(x)cos(x)​:sin(x)1+cos2(x)​
sin(x)1​+cos(x)sin(x)cos(x)​
cos(x)sin(x)cos(x)​=sin(x)cos2(x)​
cos(x)sin(x)cos(x)​
Multipliziere Brüche: a⋅cb​=ca⋅b​=sin(x)cos(x)cos(x)​
cos(x)cos(x)=cos2(x)
cos(x)cos(x)
Wende Exponentenregel an: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=cos1+1(x)
Addiere die Zahlen: 1+1=2=cos2(x)
=sin(x)cos2(x)​
=sin(x)1​+sin(x)cos2(x)​
Wende Regel an ca​±cb​=ca±b​=sin(x)1+cos2(x)​
=sin(x)1+cos2(x)​
sin(x)1+cos2(x)​=0
g(x)f(x)​=0⇒f(x)=01+cos2(x)=0
Löse mit Substitution
1+cos2(x)=0
Angenommen: cos(x)=u1+u2=0
1+u2=0:u=i,u=−i
1+u2=0
Verschiebe 1auf die rechte Seite
1+u2=0
Subtrahiere 1 von beiden Seiten1+u2−1=0−1
Vereinfacheu2=−1
u2=−1
Für x2=f(a) sind die Lösungen x=f(a)​,−f(a)​
u=−1​,u=−−1​
Vereinfache −1​:i
−1​
Wende imaginäre Zahlenregel an: −1​=i=i
Vereinfache −−1​:−i
−−1​
Wende imaginäre Zahlenregel an: −1​=i=−i
u=i,u=−i
Setze in u=cos(x)eincos(x)=i,cos(x)=−i
cos(x)=i,cos(x)=−i
cos(x)=i:Keine Lösung
cos(x)=i
KeineLo¨sung
cos(x)=−i:Keine Lösung
cos(x)=−i
KeineLo¨sung
Kombiniere alle LösungenKeineLo¨sung
csc(x)−cos(x)cot(x)=0:Keine Lösung
csc(x)−cos(x)cot(x)=0
Drücke mit sin, cos aus
csc(x)−cos(x)cot(x)
Verwende die grundlegende trigonometrische Identität: csc(x)=sin(x)1​=sin(x)1​−cos(x)cot(x)
Verwende die grundlegende trigonometrische Identität: cot(x)=sin(x)cos(x)​=sin(x)1​−cos(x)sin(x)cos(x)​
Vereinfache sin(x)1​−cos(x)sin(x)cos(x)​:sin(x)1−cos2(x)​
sin(x)1​−cos(x)sin(x)cos(x)​
cos(x)sin(x)cos(x)​=sin(x)cos2(x)​
cos(x)sin(x)cos(x)​
Multipliziere Brüche: a⋅cb​=ca⋅b​=sin(x)cos(x)cos(x)​
cos(x)cos(x)=cos2(x)
cos(x)cos(x)
Wende Exponentenregel an: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=cos1+1(x)
Addiere die Zahlen: 1+1=2=cos2(x)
=sin(x)cos2(x)​
=sin(x)1​−sin(x)cos2(x)​
Wende Regel an ca​±cb​=ca±b​=sin(x)1−cos2(x)​
=sin(x)1−cos2(x)​
sin(x)1−cos2(x)​=0
g(x)f(x)​=0⇒f(x)=01−cos2(x)=0
Löse mit Substitution
1−cos2(x)=0
Angenommen: cos(x)=u1−u2=0
1−u2=0:u=1,u=−1
1−u2=0
Verschiebe 1auf die rechte Seite
1−u2=0
Subtrahiere 1 von beiden Seiten1−u2−1=0−1
Vereinfache−u2=−1
−u2=−1
Teile beide Seiten durch −1
−u2=−1
Teile beide Seiten durch −1−1−u2​=−1−1​
Vereinfacheu2=1
u2=1
Für x2=f(a) sind die Lösungen x=f(a)​,−f(a)​
u=1​,u=−1​
1​=1
1​
Wende Regel an 1​=1=1
−1​=−1
−1​
Wende Regel an 1​=1=−1
u=1,u=−1
Setze in u=cos(x)eincos(x)=1,cos(x)=−1
cos(x)=1,cos(x)=−1
cos(x)=1:x=2πn
cos(x)=1
Allgemeine Lösung für cos(x)=1
cos(x) Periodizitätstabelle mit 2πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=0+2πn
x=0+2πn
Löse x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn
cos(x)=−1:x=π+2πn
cos(x)=−1
Allgemeine Lösung für cos(x)=−1
cos(x) Periodizitätstabelle mit 2πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=π+2πn
x=π+2πn
Kombiniere alle Lösungenx=2πn,x=π+2πn
Da die Gleichung undefiniert ist für:2πn,π+2πnKeineLo¨sung
Kombiniere alle LösungenKeineLo¨sungfu¨rx∈R

Graph

Sorry, your browser does not support this application
Interaktives Diagramm anzeigen

Beliebte Beispiele

sin(2p+1)=-1sin(2p+1)=−1solvefor y,a*z=5sin(2y)solvefory,a⋅z=5sin(2y)sin^3(x)=sin^2(x)sin3(x)=sin2(x)2sec^2(a)+tan^2(a)=32sec2(a)+tan2(a)=33cos^2(x)+4cos(x)+1=03cos2(x)+4cos(x)+1=0
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024