Soluciones
Calculadora de integrales (antiderivadas)Calculadora de derivadasCalculadora de ÁlgebraCalculadora de matricesMás...
Gráficos
Gráfica de líneaGráfica exponencialGráfica cuadráticaGráfico de senoMás...
Calculadoras
Calculadora de IMCCalculadora de interés compuestoCalculadora de porcentajeCalculadora de aceleraciónMás...
Geometría
Calculadora del teorema de pitágorasCalculadora del área del círculoCalculadora de triángulo isóscelesCalculadora de TriángulosMás...
Herramientas
CuadernoGruposHojas de referenciaHojas de trabajoPracticaVerificar
es
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometría >

((1-tan^2(a)))/((tan(a)))=2cot^2(a)

  • Pre-Álgebra
  • Álgebra
  • Precálculo
  • Cálculo
  • Funciones
  • Álgebra Lineal
  • Trigonometría
  • Estadística
  • Química
  • Economía
  • Conversiones

Solución

(tan(a))(1−tan2(a))​=2cot2(a)

Solución

a=2.15228…+πn
+1
Grados
a=123.31684…∘+180∘n
Pasos de solución
(tan(a))(1−tan2(a))​=2cot2(a)
Restar 2cot2(a) de ambos ladostan(a)1−tan2(a)​−2cot2(a)=0
Simplificar tan(a)1−tan2(a)​−2cot2(a):tan(a)1−tan2(a)−2cot2(a)tan(a)​
tan(a)1−tan2(a)​−2cot2(a)
Convertir a fracción: 2cot2(a)=tan(a)2cot2(a)tan(a)​=tan(a)1−tan2(a)​−tan(a)2cot2(a)tan(a)​
Ya que los denominadores son iguales, combinar las fracciones: ca​±cb​=ca±b​=tan(a)1−tan2(a)−2cot2(a)tan(a)​
tan(a)1−tan2(a)−2cot2(a)tan(a)​=0
g(x)f(x)​=0⇒f(x)=01−tan2(a)−2cot2(a)tan(a)=0
Re-escribir usando identidades trigonométricas
1−tan2(a)−2cot2(a)tan(a)
Utilizar la identidad trigonométrica básica: tan(x)=cot(x)1​=1−(cot(a)1​)2−2cot2(a)cot(a)1​
Simplificar 1−(cot(a)1​)2−2cot2(a)cot(a)1​:1−cot2(a)1​−2cot(a)
1−(cot(a)1​)2−2cot2(a)cot(a)1​
(cot(a)1​)2=cot2(a)1​
(cot(a)1​)2
Aplicar las leyes de los exponentes: (ba​)c=bcac​=cot2(a)12​
Aplicar la regla 1a=112=1=cot2(a)1​
2cot2(a)cot(a)1​=2cot(a)
2cot2(a)cot(a)1​
Multiplicar fracciones: a⋅cb​=ca⋅b​=cot(a)1⋅2cot2(a)​
Multiplicar los numeros: 1⋅2=2=cot(a)2cot2(a)​
Eliminar los terminos comunes: cot(a)=2cot(a)
=1−cot2(a)1​−2cot(a)
=1−cot2(a)1​−2cot(a)
1−cot2(a)1​−2cot(a)=0
Usando el método de sustitución
1−cot2(a)1​−2cot(a)=0
Sea: cot(a)=u1−u21​−2u=0
1−u21​−2u=0:u≈−0.65729…
1−u21​−2u=0
Multiplicar ambos lados por u2
1−u21​−2u=0
Multiplicar ambos lados por u21⋅u2−u21​u2−2uu2=0⋅u2
Simplificar
1⋅u2−u21​u2−2uu2=0⋅u2
Simplificar 1⋅u2:u2
1⋅u2
Multiplicar: 1⋅u2=u2=u2
Simplificar −u21​u2:−1
−u21​u2
Multiplicar fracciones: a⋅cb​=ca⋅b​=−u21⋅u2​
Eliminar los terminos comunes: u2=−1
Simplificar −2uu2:−2u3
−2uu2
Aplicar las leyes de los exponentes: ab⋅ac=ab+cuu2=u1+2=−2u1+2
Sumar: 1+2=3=−2u3
Simplificar 0⋅u2:0
0⋅u2
Aplicar la regla 0⋅a=0=0
u2−1−2u3=0
u2−1−2u3=0
u2−1−2u3=0
Resolver u2−1−2u3=0:u≈−0.65729…
u2−1−2u3=0
Escribir en la forma binómica an​xn+…+a1​x+a=0−2u3+u2−1=0
Encontrar una solución para −2u3+u2−1=0 utilizando el método de Newton-Raphson:u≈−0.65729…
−2u3+u2−1=0
Definición del método de Newton-Raphson
f(u)=−2u3+u2−1
Hallar f′(u):−6u2+2u
dud​(−2u3+u2−1)
Aplicar la regla de la suma/diferencia: (f±g)′=f′±g′=−dud​(2u3)+dud​(u2)−dud​(1)
dud​(2u3)=6u2
dud​(2u3)
Sacar la constante: (a⋅f)′=a⋅f′=2dud​(u3)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=2⋅3u3−1
Simplificar=6u2
dud​(u2)=2u
dud​(u2)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=2u2−1
Simplificar=2u
dud​(1)=0
dud​(1)
Derivada de una constante: dxd​(a)=0=0
=−6u2+2u−0
Simplificar=−6u2+2u
Sea u0​=−1Calcular un+1​ hasta que Δun+1​<0.000001
u1​=−0.75:Δu1​=0.25
f(u0​)=−2(−1)3+(−1)2−1=2f′(u0​)=−6(−1)2+2(−1)=−8u1​=−0.75
Δu1​=∣−0.75−(−1)∣=0.25Δu1​=0.25
u2​=−0.66666…:Δu2​=0.08333…
f(u1​)=−2(−0.75)3+(−0.75)2−1=0.40625f′(u1​)=−6(−0.75)2+2(−0.75)=−4.875u2​=−0.66666…
Δu2​=∣−0.66666…−(−0.75)∣=0.08333…Δu2​=0.08333…
u3​=−0.65740…:Δu3​=0.00925…
f(u2​)=−2(−0.66666…)3+(−0.66666…)2−1=0.03703…f′(u2​)=−6(−0.66666…)2+2(−0.66666…)=−4u3​=−0.65740…
Δu3​=∣−0.65740…−(−0.66666…)∣=0.00925…Δu3​=0.00925…
u4​=−0.65729…:Δu4​=0.00010…
f(u3​)=−2(−0.65740…)3+(−0.65740…)2−1=0.00042…f′(u3​)=−6(−0.65740…)2+2(−0.65740…)=−3.90792…u4​=−0.65729…
Δu4​=∣−0.65729…−(−0.65740…)∣=0.00010…Δu4​=0.00010…
u5​=−0.65729…:Δu5​=1.51148E−8
f(u4​)=−2(−0.65729…)3+(−0.65729…)2−1=5.90512E−8f′(u4​)=−6(−0.65729…)2+2(−0.65729…)=−3.90684…u5​=−0.65729…
Δu5​=∣−0.65729…−(−0.65729…)∣=1.51148E−8Δu5​=1.51148E−8
u≈−0.65729…
Aplicar la división larga Equation0:u+0.65729…−2u3+u2−1​=−2u2+2.31459…u−1.52137…
−2u2+2.31459…u−1.52137…≈0
Encontrar una solución para −2u2+2.31459…u−1.52137…=0 utilizando el método de Newton-Raphson:Sin solución para u∈R
−2u2+2.31459…u−1.52137…=0
Definición del método de Newton-Raphson
f(u)=−2u2+2.31459…u−1.52137…
Hallar f′(u):−4u+2.31459…
dud​(−2u2+2.31459…u−1.52137…)
Aplicar la regla de la suma/diferencia: (f±g)′=f′±g′=−dud​(2u2)+dud​(2.31459…u)−dud​(1.52137…)
dud​(2u2)=4u
dud​(2u2)
Sacar la constante: (a⋅f)′=a⋅f′=2dud​(u2)
Aplicar la regla de la potencia: dxd​(xa)=a⋅xa−1=2⋅2u2−1
Simplificar=4u
dud​(2.31459…u)=2.31459…
dud​(2.31459…u)
Sacar la constante: (a⋅f)′=a⋅f′=2.31459…dudu​
Aplicar la regla de derivación: dudu​=1=2.31459…⋅1
Simplificar=2.31459…
dud​(1.52137…)=0
dud​(1.52137…)
Derivada de una constante: dxd​(a)=0=0
=−4u+2.31459…−0
Simplificar=−4u+2.31459…
Sea u0​=1Calcular un+1​ hasta que Δun+1​<0.000001
u1​=0.28397…:Δu1​=0.71602…
f(u0​)=−2⋅12+2.31459…⋅1−1.52137…=−1.20678…f′(u0​)=−4⋅1+2.31459…=−1.68540…u1​=0.28397…
Δu1​=∣0.28397…−1∣=0.71602…Δu1​=0.71602…
u2​=1.15391…:Δu2​=0.86993…
f(u1​)=−2⋅0.28397…2+2.31459…⋅0.28397…−1.52137…=−1.02537…f′(u1​)=−4⋅0.28397…+2.31459…=1.17867…u2​=1.15391…
Δu2​=∣1.15391…−0.28397…∣=0.86993…Δu2​=0.86993…
u3​=0.49614…:Δu3​=0.65777…
f(u2​)=−2⋅1.15391…2+2.31459…⋅1.15391…−1.52137…=−1.51356…f′(u2​)=−4⋅1.15391…+2.31459…=−2.30105…u3​=0.49614…
Δu3​=∣0.49614…−1.15391…∣=0.65777…Δu3​=0.65777…
u4​=3.11809…:Δu4​=2.62195…
f(u3​)=−2⋅0.49614…2+2.31459…⋅0.49614…−1.52137…=−0.86532…f′(u3​)=−4⋅0.49614…+2.31459…=0.33003…u4​=3.11809…
Δu4​=∣3.11809…−0.49614…∣=2.62195…Δu4​=2.62195…
u5​=1.76452…:Δu5​=1.35357…
f(u4​)=−2⋅3.11809…2+2.31459…⋅3.11809…−1.52137…=−13.74928…f′(u4​)=−4⋅3.11809…+2.31459…=−10.15778…u5​=1.76452…
Δu5​=∣1.76452…−3.11809…∣=1.35357…Δu5​=1.35357…
u6​=0.99203…:Δu6​=0.77249…
f(u5​)=−2⋅1.76452…2+2.31459…⋅1.76452…−1.52137…=−3.66430…f′(u5​)=−4⋅1.76452…+2.31459…=−4.74350…u6​=0.99203…
Δu6​=∣0.99203…−1.76452…∣=0.77249…Δu6​=0.77249…
u7​=0.27025…:Δu7​=0.72177…
f(u6​)=−2⋅0.99203…2+2.31459…⋅0.99203…−1.52137…=−1.19348…f′(u6​)=−4⋅0.99203…+2.31459…=−1.65353…u7​=0.27025…
Δu7​=∣0.27025…−0.99203…∣=0.72177…Δu7​=0.72177…
u8​=1.11489…:Δu8​=0.84464…
f(u7​)=−2⋅0.27025…2+2.31459…⋅0.27025…−1.52137…=−1.04192…f′(u7​)=−4⋅0.27025…+2.31459…=1.23356…u8​=1.11489…
Δu8​=∣1.11489…−0.27025…∣=0.84464…Δu8​=0.84464…
u9​=0.44970…:Δu9​=0.66519…
f(u8​)=−2⋅1.11489…2+2.31459…⋅1.11489…−1.52137…=−1.42683…f′(u8​)=−4⋅1.11489…+2.31459…=−2.14500…u9​=0.44970…
Δu9​=∣0.44970…−1.11489…∣=0.66519…Δu9​=0.66519…
u10​=2.16551…:Δu10​=1.71580…
f(u9​)=−2⋅0.44970…2+2.31459…⋅0.44970…−1.52137…=−0.88496…f′(u9​)=−4⋅0.44970…+2.31459…=0.51576…u10​=2.16551…
Δu10​=∣2.16551…−0.44970…∣=1.71580…Δu10​=1.71580…
No se puede encontrar solución
La solución esu≈−0.65729…
u≈−0.65729…
Verificar las soluciones
Encontrar los puntos no definidos (singularidades):u=0
Tomar el(los) denominador(es) de 1−u21​−2u y comparar con cero
Resolver u2=0:u=0
u2=0
Aplicar la regla xn=0⇒x=0
u=0
Los siguientes puntos no están definidosu=0
Combinar los puntos no definidos con las soluciones:
u≈−0.65729…
Sustituir en la ecuación u=cot(a)cot(a)≈−0.65729…
cot(a)≈−0.65729…
cot(a)=−0.65729…:a=arccot(−0.65729…)+πn
cot(a)=−0.65729…
Aplicar propiedades trigonométricas inversas
cot(a)=−0.65729…
Soluciones generales para cot(a)=−0.65729…cot(x)=−a⇒x=arccot(−a)+πna=arccot(−0.65729…)+πn
a=arccot(−0.65729…)+πn
Combinar toda las solucionesa=arccot(−0.65729…)+πn
Mostrar soluciones en forma decimala=2.15228…+πn

Gráfica

Sorry, your browser does not support this application
Ver gráfico interactivo

Ejemplos populares

cos(6x)=cos(2x)cot(x)cos(x)-sin(x)=1cos^4(x)+cos^3(x)-2=0tan^2(x)= 1/(cos(x)+1)(sin^2(x)-2cos(x)+1)/4 =0
Herramientas de estudioSolucionador Matemático de IAProblemas popularesHojas de trabajoPracticaHojas de referenciaCalculadorasCalculadora gráficaCalculadora de GeometríaVerificar solución
AplicacionesAplicación Symbolab (Android)Calculadora gráfica (Android)Practica (Android)Aplicación Symbolab (iOS)Calculadora gráfica (iOS)Practica (iOS)Extensión de ChromeSymbolab Math Solver API
EmpresaAcerca de SymbolabBlogAyuda
LegalPrivacidadTérminosPolítica de cookiesConfiguración de CookiesNo vendas ni compartas mi información personalCopyright, Guías Comunitarias, DSA & otros recursos legalesCentro Legal de Learneo
Redes sociales
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024