Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

sin(37.5)

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

sin(37.5∘)

Lösung

42​4−6​+2​​​
+1
Dezimale
0.60876…
Schritte zur Lösung
sin(37.5∘)
Umschreiben mit Hilfe von Trigonometrie-Identitäten:21−cos(75∘)​​
sin(37.5∘)
Schreibe sin(37.5∘)als sin(275∘​)=sin(275∘​)
Verwende die Halbwinkel Identität:sin(2θ​)=21−cos(θ)​​
Verwende die Doppelwinkelidentitätcos(2θ)=1−2sin2(θ)
Ersetze θ mit 2θ​cos(θ)=1−2sin2(2θ​)
Tausche die Seiten2sin2(2θ​)=1−cos(θ)
Teile beide Seiten durch 2sin2(2θ​)=2(1−cos(θ))​
Square root both sides
Choose the root sign according to the quadrant of 2θ​:
range[0,90∘][90∘,180∘][180∘,270∘][270∘,360∘]​quadrantIIIIIIIV​sinpositivepositivenegativenegative​cospositivenegativenegativepositive​​
sin(2θ​)=2(1−cos(θ))​​
=21−cos(75∘)​​
=21−cos(75∘)​​
Umschreiben mit Hilfe von Trigonometrie-Identitäten:cos(75∘)=46​−2​​
cos(75∘)
Umschreiben mit Hilfe von Trigonometrie-Identitäten:cos(45∘)cos(30∘)−sin(45∘)sin(30∘)
cos(75∘)
Schreibe cos(75∘)als cos(45∘+30∘)=cos(45∘+30∘)
Benutze die Identität der Winkelsumme: cos(s+t)=cos(s)cos(t)−sin(s)sin(t)=cos(45∘)cos(30∘)−sin(45∘)sin(30∘)
=cos(45∘)cos(30∘)−sin(45∘)sin(30∘)
Verwende die folgende triviale Identität:cos(45∘)=22​​
cos(45∘)
cos(x) Periodizitätstabelle mit 360∘n Zyklus:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=22​​
Verwende die folgende triviale Identität:cos(30∘)=23​​
cos(30∘)
cos(x) Periodizitätstabelle mit 360∘n Zyklus:
x030∘45∘60∘90∘120∘135∘150∘​cos(x)123​​22​​21​0−21​−22​​−23​​​x180∘210∘225∘240∘270∘300∘315∘330∘​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
=23​​
Verwende die folgende triviale Identität:sin(45∘)=22​​
sin(45∘)
sin(x) Periodizitätstabelle mit 360∘n Zyklus:
=22​​
Verwende die folgende triviale Identität:sin(30∘)=21​
sin(30∘)
sin(x) Periodizitätstabelle mit 360∘n Zyklus:
=21​
=22​​⋅23​​−22​​⋅21​
Vereinfache 22​​⋅23​​−22​​⋅21​:46​−2​​
22​​⋅23​​−22​​⋅21​
22​​⋅23​​=46​​
22​​⋅23​​
Multipliziere Brüche: ba​⋅dc​=b⋅da⋅c​=2⋅22​3​​
Multipliziere die Zahlen: 2⋅2=4=42​3​​
Vereinfache 2​3​:6​
2​3​
Wende Radikal Regel an: a​b​=a⋅b​2​3​=2⋅3​=2⋅3​
Multipliziere die Zahlen: 2⋅3=6=6​
=46​​
22​​⋅21​=42​​
22​​⋅21​
Multipliziere Brüche: ba​⋅dc​=b⋅da⋅c​=2⋅22​⋅1​
Multipliziere: 2​⋅1=2​=2⋅22​​
Multipliziere die Zahlen: 2⋅2=4=42​​
=46​​−42​​
Wende Regel an ca​±cb​=ca±b​=46​−2​​
=46​−2​​
=21−46​−2​​​​
Vereinfache 21−46​−2​​​​:42​4−6​+2​​​
21−46​−2​​​​
21−46​−2​​​=84−6​+2​​
21−46​−2​​​
Füge 1−46​−2​​zusammen:44−6​+2​​
1−46​−2​​
Wandle das Element in einen Bruch um: 1=41⋅4​=41⋅4​−46​−2​​
Da die Nenner gleich sind, fasse die Brüche zusammen.: ca​±cb​=ca±b​=41⋅4−(6​−2​)​
Multipliziere die Zahlen: 1⋅4=4=44−(6​−2​)​
−(6​−2​):−6​+2​
−(6​−2​)
Setze Klammern=−(6​)−(−2​)
Wende Minus-Plus Regeln an−(−a)=a,−(a)=−a=−6​+2​
=44−6​+2​​
=244−6​+2​​​
Wende Bruchregel an: acb​​=c⋅ab​=4⋅24−6​+2​​
Multipliziere die Zahlen: 4⋅2=8=84−6​+2​​
=84−6​+2​​​
Wende Radikal Regel an: nba​​=nb​na​​, angenommen a≥0,b≥0=8​4−6​+2​​​
8​=22​
8​
Primfaktorzerlegung von 8:23
8
8ist durch 28=4⋅2teilbar=2⋅4
4ist durch 24=2⋅2teilbar=2⋅2⋅2
2 ist eine Primzahl, deshalb ist keine weitere Faktorisierung möglich.=2⋅2⋅2
=23
=23​
Wende Exponentenregel an: ab+c=ab⋅ac=22⋅2​
Wende Radikal Regel an: nab​=na​nb​=2​22​
Wende Radikal Regel an: nan​=a22​=2=22​
=22​4+2​−6​​​
Rationalisiere 22​4−6​+2​​​:42​4+2​−6​​​
22​4−6​+2​​​
Multipliziere mit dem Konjugat 2​2​​=22​2​4−6​+2​​2​​
22​2​=4
22​2​
Wende Exponentenregel an: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Addiere gleiche Elemente: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Multipliziere Brüche: a⋅cb​=ca⋅b​=21⋅2​
Streiche die gemeinsamen Faktoren: 2=1
=21+1
Addiere die Zahlen: 1+1=2=22
22=4=4
=42​4−6​+2​​​
=42​4+2​−6​​​
=42​4−6​+2​​​

Beliebte Beispiele

arccos(-0.52)arccos(−0.52)arccos(-0.55)arccos(−0.55)tan(arctan(53))tan(arctan(53))arctan(1.8)arctan(1.8)2arcsin(1/2)2arcsin(21​)
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024