解答
tan(36∘)4
解答
5(52+310)5−5
+1
十进制
5.50552…求解步骤
tan(36∘)4
使用三角恒等式改写:tan(36∘)=42(5−1)5−5
tan(36∘)
使用三角恒等式改写:cos(36∘)sin(36∘)
tan(36∘)
使用基本三角恒等式: tan(x)=cos(x)sin(x)=cos(36∘)sin(36∘)
=cos(36∘)sin(36∘)
使用三角恒等式改写:sin(36∘)=425−5
sin(36∘)
显示:cos(36∘)−sin(18∘)=21
使用以下积化和差公式: 2sin(x)cos(y)=sin(x+y)−sin(x−y)2cos(36∘)sin(18∘)=sin(54∘)−sin(18∘)
显示:2cos(36∘)sin(18∘)=21
使用倍角公式: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
两边除以 sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
利用以下特性: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
两边除以 cos(18∘)1=4sin(18∘)cos(36∘)
两边除以 221=2sin(18∘)cos(36∘)
代入 21=2sin(18∘)cos(36∘)21=sin(54∘)−sin(18∘)
sin(54∘)=cos(90∘−54∘)21=cos(90∘−54∘)−sin(18∘)
21=cos(36∘)−sin(18∘)
显示:cos(36∘)+sin(18∘)=45
使用因式分解法则:a2−b2=(a+b)(a−b)a=cos(36∘)+sin(18∘)(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))((cos(36∘)+sin(18∘))−(cos(36∘)−sin(18∘)))
整理后得(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=2(2cos(36∘)sin(18∘))
显示:2cos(36∘)sin(18∘)=21
使用倍角公式: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
两边除以 sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
利用以下特性: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
两边除以 cos(18∘)1=4sin(18∘)cos(36∘)
两边除以 221=2sin(18∘)cos(36∘)
代入 2cos(36∘)sin(18∘)=21(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=1
代入 cos(36∘)−sin(18∘)=21(cos(36∘)+sin(18∘))2−(21)2=1
整理后得(cos(36∘)+sin(18∘))2−41=1
两边加上 41(cos(36∘)+sin(18∘))2−41+41=1+41
整理后得(cos(36∘)+sin(18∘))2=45
在两侧开平方cos(36∘)+sin(18∘)=±45
cos(36∘)不能为负sin(18∘)不能为负cos(36∘)+sin(18∘)=45
以下方程式相加cos(36∘)+sin(18∘)=25((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))=(25+21)
整理后得cos(36∘)=45+1
两边进行平方(cos(36∘))2=(45+1)2
利用以下特性: sin2(x)=1−cos2(x)sin2(36∘)=1−cos2(36∘)
代入 cos(36∘)=45+1sin2(36∘)=1−(45+1)2
整理后得sin2(36∘)=85−5
在两侧开平方sin(36∘)=±85−5
sin(36∘)不能为负sin(36∘)=85−5
整理后得sin(36∘)=225−5
=225−5
化简=425−5
使用三角恒等式改写:cos(36∘)=45+1
cos(36∘)
显示:cos(36∘)−sin(18∘)=21
使用以下积化和差公式: 2sin(x)cos(y)=sin(x+y)−sin(x−y)2cos(36∘)sin(18∘)=sin(54∘)−sin(18∘)
显示:2cos(36∘)sin(18∘)=21
使用倍角公式: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
两边除以 sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
利用以下特性: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
两边除以 cos(18∘)1=4sin(18∘)cos(36∘)
两边除以 221=2sin(18∘)cos(36∘)
代入 21=2sin(18∘)cos(36∘)21=sin(54∘)−sin(18∘)
sin(54∘)=cos(90∘−54∘)21=cos(90∘−54∘)−sin(18∘)
21=cos(36∘)−sin(18∘)
显示:cos(36∘)+sin(18∘)=45
使用因式分解法则:a2−b2=(a+b)(a−b)a=cos(36∘)+sin(18∘)(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))((cos(36∘)+sin(18∘))−(cos(36∘)−sin(18∘)))
整理后得(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=2(2cos(36∘)sin(18∘))
显示:2cos(36∘)sin(18∘)=21
使用倍角公式: sin(2x)=2sin(x)cos(x)sin(72∘)=2sin(36∘)cos(36∘)sin(72∘)sin(36∘)=4sin(36∘)sin(18∘)cos(36∘)cos(18∘)
两边除以 sin(36∘)sin(72∘)=4sin(18∘)cos(36∘)cos(18∘)
利用以下特性: sin(x)=cos(90∘−x)sin(72∘)=cos(90∘−72∘)cos(90∘−72∘)=4sin(18∘)cos(36∘)cos(18∘)
cos(18∘)=4sin(18∘)cos(36∘)cos(18∘)
两边除以 cos(18∘)1=4sin(18∘)cos(36∘)
两边除以 221=2sin(18∘)cos(36∘)
代入 2cos(36∘)sin(18∘)=21(cos(36∘)+sin(18∘))2−(cos(36∘)−sin(18∘))2=1
代入 cos(36∘)−sin(18∘)=21(cos(36∘)+sin(18∘))2−(21)2=1
整理后得(cos(36∘)+sin(18∘))2−41=1
两边加上 41(cos(36∘)+sin(18∘))2−41+41=1+41
整理后得(cos(36∘)+sin(18∘))2=45
在两侧开平方cos(36∘)+sin(18∘)=±45
cos(36∘)不能为负sin(18∘)不能为负cos(36∘)+sin(18∘)=45
以下方程式相加cos(36∘)+sin(18∘)=25((cos(36∘)+sin(18∘))+(cos(36∘)−sin(18∘)))=(25+21)
整理后得cos(36∘)=45+1
=45+1
=45+1425−5
化简 45+1425−5:42(5−1)5−5
45+1425−5
分式相除: dcba=b⋅ca⋅d=4(5+1)25−5⋅4
约分:4=5+125−5
5+125−5有理化:42(5−1)5−5
5+125−5
乘以共轭根式 5−15−1=(5+1)(5−1)25−5(5−1)
(5+1)(5−1)=4
(5+1)(5−1)
使用平方差公式: (a+b)(a−b)=a2−b2a=5,b=1=(5)2−12
化简 (5)2−12:4
(5)2−12
使用法则 1a=112=1=(5)2−1
(5)2=5
(5)2
使用根式运算法则: a=a21=(521)2
使用指数法则: (ab)c=abc=521⋅2
21⋅2=1
21⋅2
分式相乘: a⋅cb=ca⋅b=21⋅2
约分:2=1
=5
=5−1
数字相减:5−1=4=4
=4
=42(5−1)5−5
=42(5−1)5−5
=42(5−1)5−5
=42(5−1)5−54
化简 42(5−1)5−54:5(52+310)5−5
42(5−1)5−54
使用分式法则: cba=ba⋅c=2(5−1)5−54⋅4
数字相乘:4⋅4=16=2(5−1)5−516
分解 16:24
因式分解 16=24
=2(5−1)5−524
消掉 2(5−1)5−524:(5−1)5−5227
2(5−1)5−524
使用根式运算法则: na=an12=221=221(5−1)5−524
使用指数法则: xbxa=xa−b22124=24−21=(5−1)5−524−21
数字相减:4−21=27=(5−1)5−5227
=(5−1)5−5227
227=232
227
227=23+21=23+21
使用指数法则: xa+b=xaxb=23⋅221
整理后得=232
=(5−1)5−5232
23=8=(5−1)5−582
(5−1)5−582有理化:5(52+310)5−5
(5−1)5−582
乘以共轭根式 5+15+1=(5−1)5−5(5+1)82(5+1)
(5−1)5−5(5+1)=45−5
(5−1)5−5(5+1)
=(5−1)(5+1)5−5
乘开 (5−1)(5+1):4
(5−1)(5+1)
使用平方差公式: (a−b)(a+b)=a2−b2a=5,b=1=(5)2−12
化简 (5)2−12:4
(5)2−12
使用法则 1a=112=1=(5)2−1
(5)2=5
(5)2
使用根式运算法则: a=a21=(521)2
使用指数法则: (ab)c=abc=521⋅2
21⋅2=1
21⋅2
分式相乘: a⋅cb=ca⋅b=21⋅2
约分:2=1
=5
=5−1
数字相减:5−1=4=4
=4
=5−5⋅4
乘开 5−5⋅4:45−5
5−5⋅4
打开括号=5−5⋅4
=45−5
=45−5
=45−582(5+1)
数字相除:48=2=5−522(1+5)
乘以共轭根式 5−55−5=5−55−522(1+5)5−5
5−55−5=5−5
5−55−5
使用根式运算法则: aa=a5−55−5=5−5=5−5
=5−522(1+5)5−5
乘以共轭根式 5+55+5=(5−5)(5+5)22(1+5)5−5(5+5)
22(1+5)5−5(5+5)=2025−5+12105−5
22(1+5)5−5(5+5)
=22(1+5)(5+5)5−5
乘开 (1+5)(5+5):10+65
(1+5)(5+5)
使用 FOIL 方法: (a+b)(c+d)=ac+ad+bc+bda=1,b=5,c=5,d=5=1⋅5+1⋅5+5⋅5+55
=1⋅5+1⋅5+55+55
化简 1⋅5+1⋅5+55+55:10+65
1⋅5+1⋅5+55+55
同类项相加:1⋅5+55=65=1⋅5+65+55
数字相乘:1⋅5=5=5+65+55
使用根式运算法则: aa=a55=5=5+65+5
数字相加:5+5=10=10+65
=10+65
=225−5(10+65)
乘开 225−5(10+65):2025−5+12105−5
225−5(10+65)
使用分配律: a(b+c)=ab+aca=225−5,b=10,c=65=225−5⋅10+225−5⋅65
=2⋅1025−5+2⋅6255−5
化简 2⋅1025−5+2⋅6255−5:2025−5+12105−5
2⋅1025−5+2⋅6255−5
2⋅1025−5=2025−5
2⋅1025−5
数字相乘:2⋅10=20=2025−5
2⋅6255−5=12105−5
2⋅6255−5
数字相乘:2⋅6=12=12255−5
使用根式运算法则: ab=a⋅b255−5=2⋅5(5−5)=122⋅5(5−5)
数字相乘:2⋅5=10=1210(5−5)
使用根式运算法则: nab=nanb, 假定 a≥0,b≥010(5−5)=105−5=12105−5
=2025−5+12105−5
=2025−5+12105−5
=2025−5+12105−5
(5−5)(5+5)=20
(5−5)(5+5)
使用平方差公式: (a−b)(a+b)=a2−b2a=5,b=5=52−(5)2
化简 52−(5)2:20
52−(5)2
52=25
52
52=25=25
(5)2=5
(5)2
使用根式运算法则: a=a21=(521)2
使用指数法则: (ab)c=abc=521⋅2
21⋅2=1
21⋅2
分式相乘: a⋅cb=ca⋅b=21⋅2
约分:2=1
=5
=25−5
数字相减:25−5=20=20
=20
=202025−5+12105−5
分解 2025−5+12105−5:45−5(52+310)
2025−5+12105−5
改写为=5⋅45−52+3⋅45−510
因式分解出通项 45−5=45−5(52+310)
=2045−5(52+310)
约分:4=5(52+310)5−5
=5(52+310)5−5
=5(52+310)5−5