解答
∫3x5(5x6−2)9dx
解答
4390625x60−390625x54+703125x48−750000x42+525000x36−252000x30+84000x24−19200x18+2880x12−256x6+C
求解步骤
∫3x5(5x6−2)9dx
提出常数: ∫a⋅f(x)dx=a⋅∫f(x)dx=3⋅∫x5(5x6−2)9dx
乘开 x5(5x6−2)9:1953125x59−7031250x53+11250000x47−10500000x41+6300000x35−2520000x29+672000x23−115200x17+11520x11−512x5
=3⋅∫1953125x59−7031250x53+11250000x47−10500000x41+6300000x35−2520000x29+672000x23−115200x17+11520x11−512x5dx
使用积分加法定则: ∫f(x)±g(x)dx=∫f(x)dx±∫g(x)dx=3(∫1953125x59dx−∫7031250x53dx+∫11250000x47dx−∫10500000x41dx+∫6300000x35dx−∫2520000x29dx+∫672000x23dx−∫115200x17dx+∫11520x11dx−∫512x5dx)
∫1953125x59dx=12390625x60
∫7031250x53dx=3390625x54
∫11250000x47dx=234375x48
∫10500000x41dx=250000x42
∫6300000x35dx=175000x36
∫2520000x29dx=84000x30
∫672000x23dx=28000x24
∫115200x17dx=6400x18
∫11520x11dx=960x12
∫512x5dx=3256x6
=3(12390625x60−3390625x54+234375x48−250000x42+175000x36−84000x30+28000x24−6400x18+960x12−3256x6)
化简 3(12390625x60−3390625x54+234375x48−250000x42+175000x36−84000x30+28000x24−6400x18+960x12−3256x6):4390625x60−390625x54+703125x48−750000x42+525000x36−252000x30+84000x24−19200x18+2880x12−256x6
=4390625x60−390625x54+703125x48−750000x42+525000x36−252000x30+84000x24−19200x18+2880x12−256x6
解答补常数=4390625x60−390625x54+703125x48−750000x42+525000x36−252000x30+84000x24−19200x18+2880x12−256x6+C