Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

-sqrt(1-tan(x))=sec(x)

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

−1−tan(x)​=sec(x)

Lösung

x=πn
+1
Grad
x=0∘+180∘n
Schritte zur Lösung
−1−tan(x)​=sec(x)
Quadriere beide Seiten(−1−tan(x)​)2=sec2(x)
Subtrahiere sec2(x) von beiden Seiten1−tan(x)−sec2(x)=0
Umschreiben mit Hilfe von Trigonometrie-Identitäten
1−sec2(x)−tan(x)
Verwende die Pythagoreische Identität: sec2(x)=tan2(x)+1sec2(x)−1=tan2(x)=−tan(x)−tan2(x)
−tan(x)−tan2(x)=0
Löse mit Substitution
−tan(x)−tan2(x)=0
Angenommen: tan(x)=u−u−u2=0
−u−u2=0:u=−1,u=0
−u−u2=0
Schreibe in der Standard Form ax2+bx+c=0−u2−u=0
Löse mit der quadratischen Formel
−u2−u=0
Quadratische Formel für Gliechungen:
Für a=−1,b=−1,c=0u1,2​=2(−1)−(−1)±(−1)2−4(−1)⋅0​​
u1,2​=2(−1)−(−1)±(−1)2−4(−1)⋅0​​
(−1)2−4(−1)⋅0​=1
(−1)2−4(−1)⋅0​
Wende Regel an −(−a)=a=(−1)2+4⋅1⋅0​
(−1)2=1
(−1)2
Wende Exponentenregel an: (−a)n=an,wenn n gerade ist(−1)2=12=12
Wende Regel an 1a=1=1
4⋅1⋅0=0
4⋅1⋅0
Wende Regel an 0⋅a=0=0
=1+0​
Addiere die Zahlen: 1+0=1=1​
Wende Regel an 1​=1=1
u1,2​=2(−1)−(−1)±1​
Trenne die Lösungenu1​=2(−1)−(−1)+1​,u2​=2(−1)−(−1)−1​
u=2(−1)−(−1)+1​:−1
2(−1)−(−1)+1​
Entferne die Klammern: (−a)=−a,−(−a)=a=−2⋅11+1​
Addiere die Zahlen: 1+1=2=−2⋅12​
Multipliziere die Zahlen: 2⋅1=2=−22​
Wende Bruchregel an: −ba​=−ba​=−22​
Wende Regel an aa​=1=−1
u=2(−1)−(−1)−1​:0
2(−1)−(−1)−1​
Entferne die Klammern: (−a)=−a,−(−a)=a=−2⋅11−1​
Subtrahiere die Zahlen: 1−1=0=−2⋅10​
Multipliziere die Zahlen: 2⋅1=2=−20​
Wende Bruchregel an: −ba​=−ba​=−20​
Wende Regel an a0​=0,a=0=−0
=0
Die Lösungen für die quadratische Gleichung sind: u=−1,u=0
Setze in u=tan(x)eintan(x)=−1,tan(x)=0
tan(x)=−1,tan(x)=0
tan(x)=−1:x=43π​+πn
tan(x)=−1
Allgemeine Lösung für tan(x)=−1
tan(x) Periodizitätstabelle mit πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=43π​+πn
x=43π​+πn
tan(x)=0:x=πn
tan(x)=0
Allgemeine Lösung für tan(x)=0
tan(x) Periodizitätstabelle mit πn Zyklus:
x06π​4π​3π​2π​32π​43π​65π​​tan(x)033​​13​±∞−3​−1−33​​​​
x=0+πn
x=0+πn
Löse x=0+πn:x=πn
x=0+πn
0+πn=πnx=πn
x=πn
Kombiniere alle Lösungenx=43π​+πn,x=πn
Verifiziere Lösungen, indem du sie in die Original-Gleichung einsetzt
Überprüfe die Lösungen, in dem die sie in −1−tan(x)​=sec(x)
einsetzt und entferne die Lösungen, die mit der Gleichung nicht übereinstimmen.
Überprüfe die Lösung 43π​+πn:Falsch
43π​+πn
Setze ein n=143π​+π1
Setze x=43π​+π1in−1−tan(x)​=sec(x) ein, um zu lösen−1−tan(43π​+π1)​=sec(43π​+π1)
Fasse zusammen−1.41421…=1.41421…
⇒Falsch
Überprüfe die Lösung πn:Wahr
πn
Setze ein n=1π1
Setze x=π1in−1−tan(x)​=sec(x) ein, um zu lösen−1−tan(π1)​=sec(π1)
Fasse zusammen−1=−1
⇒Wahr
x=πn

Graph

Sorry, your browser does not support this application
Interaktives Diagramm anzeigen

Beliebte Beispiele

sec((3x)/2)=2sec(23x​)=2cos(6x)=0cos(6x)=0sin^2(x)-cos^2(x)-cos(x)=0sin2(x)−cos2(x)−cos(x)=0sec^2(θ)+sec(θ)-2=0sec2(θ)+sec(θ)−2=0sec^2(x)=8cos(x)sec2(x)=8cos(x)
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024