Soluciones
Calculadora de integrales (antiderivadas)Calculadora de derivadasCalculadora de ÁlgebraCalculadora de matricesMás...
Gráficos
Gráfica de líneaGráfica exponencialGráfica cuadráticaGráfico de senoMás...
Calculadoras
Calculadora de IMCCalculadora de interés compuestoCalculadora de porcentajeCalculadora de aceleraciónMás...
Geometría
Calculadora del teorema de pitágorasCalculadora del área del círculoCalculadora de triángulo isóscelesCalculadora de TriángulosMás...
Herramientas
CuadernoGruposHojas de referenciaHojas de trabajoPracticaVerificar
es
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometría >

73500=130000*sin(x)+0.15*130000*cos(x)

  • Pre-Álgebra
  • Álgebra
  • Precálculo
  • Cálculo
  • Funciones
  • Álgebra Lineal
  • Trigonometría
  • Estadística
  • Química
  • Economía
  • Conversiones

Solución

73500=130000⋅sin(x)+0.15⋅130000⋅cos(x)

Solución

x=2.39936…+2πn,x=0.44444…+2πn
+1
Grados
x=137.47362…∘+360∘n,x=25.46484…∘+360∘n
Pasos de solución
73500=130000sin(x)+0.15⋅130000cos(x)
Restar 0.15130000cos(x) de ambos lados130000sin(x)=73500−19500cos(x)
Elevar al cuadrado ambos lados(130000sin(x))2=(73500−19500cos(x))2
Restar (73500−19500cos(x))2 de ambos lados1300002sin2(x)−735002+2866500000cos(x)−380250000cos2(x)=0
Re-escribir usando identidades trigonométricas
−735002+1300002sin2(x)+2866500000cos(x)−380250000cos2(x)
Utilizar la identidad pitagórica: cos2(x)+sin2(x)=1sin2(x)=1−cos2(x)=−735002+1300002(1−cos2(x))+2866500000cos(x)−380250000cos2(x)
−735002+(1−cos2(x))⋅1300002+2866500000cos(x)−380250000cos2(x)=0
Usando el método de sustitución
−735002+(1−cos2(x))⋅1300002+2866500000cos(x)−380250000cos2(x)=0
Sea: cos(x)=u−735002+(1−u2)⋅1300002+2866500000u−380250000u2=0
−735002+(1−u2)⋅1300002+2866500000u−380250000u2=0:u=2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​,u=−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​
−735002+(1−u2)⋅1300002+2866500000u−380250000u2=0
Desarrollar −735002+(1−u2)⋅1300002+2866500000u−380250000u2:−735002+1300002−1300002u2+2866500000u−380250000u2
−735002+(1−u2)⋅1300002+2866500000u−380250000u2
=−735002+1300002(1−u2)+2866500000u−380250000u2
Expandir 1300002(1−u2):1300002−1300002u2
1300002(1−u2)
Poner los parentesis utilizando: a(b−c)=ab−aca=1300002,b=1,c=u2=1300002⋅1−1300002u2
Multiplicar: 1300002⋅1=1300002=1300002−1300002u2
=−735002+1300002−1300002u2+2866500000u−380250000u2
−735002+1300002−1300002u2+2866500000u−380250000u2=0
Escribir en la forma binómica ax2+bx+c=0−(1300002+380250000)u2+2866500000u−735002+1300002=0
Resolver con la fórmula general para ecuaciones de segundo grado:
−(1300002+380250000)u2+2866500000u−735002+1300002=0
Formula general para ecuaciones de segundo grado:
Para a=−1300002−380250000,b=2866500000,c=−735002+1300002u1,2​=2(−1300002−380250000)−2866500000±28665000002−4(−1300002−380250000)(−735002+1300002)​​
u1,2​=2(−1300002−380250000)−2866500000±28665000002−4(−1300002−380250000)(−735002+1300002)​​
28665000002−4(−1300002−380250000)(−735002+1300002)​=28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​
28665000002−4(−1300002−380250000)(−735002+1300002)​
Expandir 28665000002−4(−1300002−380250000)(−735002+1300002):28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000
28665000002−4(−1300002−380250000)(−735002+1300002)
Expandir −4(−1300002−380250000)(−735002+1300002):−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000
Expandir (−1300002−380250000)(−735002+1300002):514⋅14958268416−1300004+735002⋅380250000−1300002⋅380250000
(−1300002−380250000)(−735002+1300002)
Aplicar la propiedad distributiva: (a+b)(c+d)=ac+ad+bc+bda=−1300002,b=−380250000,c=−735002,d=1300002=(−1300002)(−735002)+(−1300002)⋅1300002+(−380250000)(−735002)+(−380250000)⋅1300002
Aplicar las reglas de los signos(−a)(−b)=ab,+(−a)=−a=1300002⋅735002−1300002⋅1300002+735002⋅380250000−1300002⋅380250000
Simplificar 1300002⋅735002−1300002⋅1300002+735002⋅380250000−1300002⋅380250000:514⋅14958268416−1300004+735002⋅380250000−1300002⋅380250000
1300002⋅735002−1300002⋅1300002+735002⋅380250000−1300002⋅380250000
1300002⋅735002=514⋅14958268416
1300002⋅735002
Factorizar entero 130000=24⋅54⋅13=(24⋅54⋅13)2⋅735002
Aplicar las leyes de los exponentes: (ab)c=acbc(24⋅54⋅13)2=(24)2(54)2⋅132=(24)2(54)2⋅132⋅735002
Aplicar las leyes de los exponentes: (ab)c=abc(24)2=24⋅2,(54)2=54⋅2=24⋅2⋅54⋅2⋅132⋅735002
Simplificar=28⋅58⋅132⋅735002
Factorizar entero 73500=53⋅22⋅147=28⋅58⋅132(22⋅53⋅147)2
Aplicar las leyes de los exponentes: (ab)c=acbc(22⋅53⋅147)2=(22)2(53)2⋅1472=28⋅58⋅132(22)2(53)2⋅1472
Aplicar las leyes de los exponentes: (ab)c=abc(22)2=22⋅2,(53)2=53⋅2=28⋅58⋅132⋅22⋅2⋅53⋅2⋅1472
Simplificar=28⋅58⋅132⋅24⋅56⋅1472
Aplicar las leyes de los exponentes: ab⋅ac=ab+c28⋅24=28+4=58⋅132⋅28+4⋅56⋅1472
Sumar: 8+4=12=58⋅132⋅212⋅56⋅1472
Aplicar las leyes de los exponentes: ab⋅ac=ab+c58⋅56=58+6=132⋅212⋅58+6⋅1472
Sumar: 8+6=14=132⋅212⋅514⋅1472
132=169=514⋅212⋅1472⋅169
212=4096=514⋅1472⋅169⋅4096
1472=21609=514⋅169⋅4096⋅21609
Multiplicar los numeros: 169⋅4096⋅21609=14958268416=514⋅14958268416
1300002⋅1300002=1300004
1300002⋅1300002
Aplicar las leyes de los exponentes: ab⋅ac=ab+c1300002⋅1300002=1300002+2=1300002+2
Sumar: 2+2=4=1300004
=514⋅14958268416−1300004+735002⋅380250000−1300002⋅380250000
=514⋅14958268416−1300004+735002⋅380250000−1300002⋅380250000
=−4(514⋅14958268416−1300004+735002⋅380250000−1300002⋅380250000)
Expandir −4(514⋅14958268416−1300004+735002⋅380250000−1300002⋅380250000):−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000
−4(514⋅14958268416−1300004+735002⋅380250000−1300002⋅380250000)
Aplicar la siguiente regla de productos notables=(−4)⋅514⋅14958268416+(−4)(−1300004)+(−4)⋅735002⋅380250000+(−4)(−1300002⋅380250000)
Aplicar las reglas de los signos+(−a)=−a,(−a)(−b)=ab=−514⋅4⋅14958268416+1300004⋅4−735002⋅4⋅380250000+1300002⋅4⋅380250000
Simplificar −514⋅4⋅14958268416+1300004⋅4−735002⋅4⋅380250000+1300002⋅4⋅380250000:−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000
−514⋅4⋅14958268416+1300004⋅4−735002⋅4⋅380250000+1300002⋅4⋅380250000
Multiplicar los numeros: 4⋅14958268416=59833073664=−514⋅59833073664+1300004⋅4−735002⋅4⋅380250000+1300002⋅4⋅380250000
Multiplicar los numeros: 4⋅380250000=1521000000=−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000
=−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000
=−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000
=28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000
=28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​
u1,2​=2(−1300002−380250000)−2866500000±28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​
Separar las solucionesu1​=2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​,u2​=2(−1300002−380250000)−2866500000−28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​
u=2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​
u=2(−1300002−380250000)−2866500000−28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​:−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​
2(−1300002−380250000)−2866500000−28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​
Aplicar las propiedades de las fracciones: −b−a​=ba​−2866500000−28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​=−(1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000)=−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​
Aplicar las propiedades de las fracciones: −ba​=−ba​=−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​
Las soluciones a la ecuación de segundo grado son: u=2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​,u=−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​
Sustituir en la ecuación u=cos(x)cos(x)=2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​,cos(x)=−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​
cos(x)=2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​,cos(x)=−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​
cos(x)=2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​:x=arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2πn,x=−arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2πn
cos(x)=2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​
Aplicar propiedades trigonométricas inversas
cos(x)=2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​
Soluciones generales para cos(x)=2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​cos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2πn,x=−arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2πn
x=arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2πn,x=−arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2πn
cos(x)=−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​:x=arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2πn,x=2π−arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2πn
cos(x)=−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​
Aplicar propiedades trigonométricas inversas
cos(x)=−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​
Soluciones generales para cos(x)=−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​cos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2πn,x=2π−arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2πn
x=arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2πn,x=2π−arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2πn
Combinar toda las solucionesx=arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2πn,x=−arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2πn,x=arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2πn,x=2π−arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2πn
Verificar las soluciones sustituyendo en la ecuación original
Verificar las soluciones sustituyéndolas en 130000sin(x)+0.15130000cos(x)=73500
Quitar las que no concuerden con la ecuación.
Verificar la solución arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2πn:Verdadero
arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2πn
Sustituir n=1arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2π1
Multiplicar 130000sin(x)+0.15130000cos(x)=73500 por x=arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2π1130000sin(arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2π1)+0.15⋅130000cos(arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2π1)=73500
Simplificar73500=73500
⇒Verdadero
Verificar la solución −arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2πn:Falso
−arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2πn
Sustituir n=1−arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2π1
Multiplicar 130000sin(x)+0.15130000cos(x)=73500 por x=−arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2π1130000sin(−arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2π1)+0.15⋅130000cos(−arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2π1)=73500
Simplificar−102241.68342…=73500
⇒Falso
Verificar la solución arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2πn:Verdadero
arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2πn
Sustituir n=1arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2π1
Multiplicar 130000sin(x)+0.15130000cos(x)=73500 por x=arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2π1130000sin(arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2π1)+0.15⋅130000cos(arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2π1)=73500
Simplificar73500=73500
⇒Verdadero
Verificar la solución 2π−arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2πn:Falso
2π−arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2πn
Sustituir n=12π−arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2π1
Multiplicar 130000sin(x)+0.15130000cos(x)=73500 por x=2π−arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2π1130000sin(2π−arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2π1)+0.15⋅130000cos(2π−arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2π1)=73500
Simplificar−38288.87892…=73500
⇒Falso
x=arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000​​)+2πn,x=arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000​+2866500000​)+2πn
Mostrar soluciones en forma decimalx=2.39936…+2πn,x=0.44444…+2πn

Gráfica

Sorry, your browser does not support this application
Ver gráfico interactivo

Ejemplos populares

cos(pi/2+x)-sin(pi/2+x)=0tan(θ+32)=cot(θ-20)sec^2(x)-1=tan(x)tan(x/4)=12sin(2x)=cos(x)
Herramientas de estudioSolucionador Matemático de IAProblemas popularesHojas de trabajoPracticaHojas de referenciaCalculadorasCalculadora gráficaCalculadora de GeometríaVerificar solución
AplicacionesAplicación Symbolab (Android)Calculadora gráfica (Android)Practica (Android)Aplicación Symbolab (iOS)Calculadora gráfica (iOS)Practica (iOS)Extensión de ChromeSymbolab Math Solver API
EmpresaAcerca de SymbolabBlogAyuda
LegalPrivacidadTérminosPolítica de cookiesConfiguración de CookiesNo vendas ni compartas mi información personalCopyright, Guías Comunitarias, DSA & otros recursos legalesCentro Legal de Learneo
Redes sociales
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024