الحلّ
73500=130000⋅sin(x)+0.15⋅130000⋅cos(x)
الحلّ
x=2.39936…+2πn,x=0.44444…+2πn
+1
درجات
x=137.47362…∘+360∘n,x=25.46484…∘+360∘nخطوات الحلّ
73500=130000sin(x)+0.15⋅130000cos(x)
من الطرفين 0.15130000cos(x)اطرح130000sin(x)=73500−19500cos(x)
ربّع الطرفين(130000sin(x))2=(73500−19500cos(x))2
من الطرفين (73500−19500cos(x))2اطرح1300002sin2(x)−735002+2866500000cos(x)−380250000cos2(x)=0
Rewrite using trig identities
−735002+1300002sin2(x)+2866500000cos(x)−380250000cos2(x)
cos2(x)+sin2(x)=1 :فعّل نطريّة فيتاغوروسsin2(x)=1−cos2(x)=−735002+1300002(1−cos2(x))+2866500000cos(x)−380250000cos2(x)
−735002+(1−cos2(x))⋅1300002+2866500000cos(x)−380250000cos2(x)=0
بالاستعانة بطريقة التعويض
−735002+(1−cos2(x))⋅1300002+2866500000cos(x)−380250000cos2(x)=0
cos(x)=u:على افتراض أنّ−735002+(1−u2)⋅1300002+2866500000u−380250000u2=0
−735002+(1−u2)⋅1300002+2866500000u−380250000u2=0:u=2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000,u=−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000+2866500000
−735002+(1−u2)⋅1300002+2866500000u−380250000u2=0
−735002+(1−u2)⋅1300002+2866500000u−380250000u2وسّع:−735002+1300002−1300002u2+2866500000u−380250000u2
−735002+(1−u2)⋅1300002+2866500000u−380250000u2
=−735002+1300002(1−u2)+2866500000u−380250000u2
1300002(1−u2)وسٌع:1300002−1300002u2
1300002(1−u2)
a(b−c)=ab−ac : افتح أقواس بالاستعانة بـa=1300002,b=1,c=u2=1300002⋅1−1300002u2
1300002⋅1=1300002:اضرب=1300002−1300002u2
=−735002+1300002−1300002u2+2866500000u−380250000u2
−735002+1300002−1300002u2+2866500000u−380250000u2=0
ax2+bx+c=0اكتب بالصورة الاعتياديّة −(1300002+380250000)u2+2866500000u−735002+1300002=0
حلّ بالاستعانة بالصيغة التربيعيّة
−(1300002+380250000)u2+2866500000u−735002+1300002=0
الصيغة لحلّ المعادلة التربيعيّة
:a=−1300002−380250000,b=2866500000,c=−735002+1300002لـu1,2=2(−1300002−380250000)−2866500000±28665000002−4(−1300002−380250000)(−735002+1300002)
u1,2=2(−1300002−380250000)−2866500000±28665000002−4(−1300002−380250000)(−735002+1300002)
28665000002−4(−1300002−380250000)(−735002+1300002)=28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000
28665000002−4(−1300002−380250000)(−735002+1300002)
28665000002−4(−1300002−380250000)(−735002+1300002)وسٌع:28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000
28665000002−4(−1300002−380250000)(−735002+1300002)
−4(−1300002−380250000)(−735002+1300002)وسٌع:−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000
(−1300002−380250000)(−735002+1300002)وسٌع:514⋅14958268416−1300004+735002⋅380250000−1300002⋅380250000
(−1300002−380250000)(−735002+1300002)
(a+b)(c+d)=ac+ad+bc+bd :(a+b)(c+d)=ac+ad+bc+bdفعّل قانون التوزيعa=−1300002,b=−380250000,c=−735002,d=1300002=(−1300002)(−735002)+(−1300002)⋅1300002+(−380250000)(−735002)+(−380250000)⋅1300002
فعّل قوانين سالب-موجب(−a)(−b)=ab,+(−a)=−a=1300002⋅735002−1300002⋅1300002+735002⋅380250000−1300002⋅380250000
1300002⋅735002−1300002⋅1300002+735002⋅380250000−1300002⋅380250000بسّط:514⋅14958268416−1300004+735002⋅380250000−1300002⋅380250000
1300002⋅735002−1300002⋅1300002+735002⋅380250000−1300002⋅380250000
1300002⋅735002=514⋅14958268416
1300002⋅735002
130000=24⋅54⋅13:حلّل العدد لعوامله الأوّليّة=(24⋅54⋅13)2⋅735002
(ab)c=acbc :فعّل قانون القوى(24⋅54⋅13)2=(24)2(54)2⋅132=(24)2(54)2⋅132⋅735002
(ab)c=abc :فعّل قانون القوى(24)2=24⋅2,(54)2=54⋅2=24⋅2⋅54⋅2⋅132⋅735002
بسّط=28⋅58⋅132⋅735002
73500=53⋅22⋅147:حلّل العدد لعوامله الأوّليّة=28⋅58⋅132(22⋅53⋅147)2
(ab)c=acbc :فعّل قانون القوى(22⋅53⋅147)2=(22)2(53)2⋅1472=28⋅58⋅132(22)2(53)2⋅1472
(ab)c=abc :فعّل قانون القوى(22)2=22⋅2,(53)2=53⋅2=28⋅58⋅132⋅22⋅2⋅53⋅2⋅1472
بسّط=28⋅58⋅132⋅24⋅56⋅1472
ab⋅ac=ab+c :فعّل قانون القوى28⋅24=28+4=58⋅132⋅28+4⋅56⋅1472
8+4=12:اجمع الأعداد=58⋅132⋅212⋅56⋅1472
ab⋅ac=ab+c :فعّل قانون القوى58⋅56=58+6=132⋅212⋅58+6⋅1472
8+6=14:اجمع الأعداد=132⋅212⋅514⋅1472
132=169=514⋅212⋅1472⋅169
212=4096=514⋅1472⋅169⋅4096
1472=21609=514⋅169⋅4096⋅21609
169⋅4096⋅21609=14958268416:اضرب الأعداد=514⋅14958268416
1300002⋅1300002=1300004
1300002⋅1300002
ab⋅ac=ab+c :فعّل قانون القوى1300002⋅1300002=1300002+2=1300002+2
2+2=4:اجمع الأعداد=1300004
=514⋅14958268416−1300004+735002⋅380250000−1300002⋅380250000
=514⋅14958268416−1300004+735002⋅380250000−1300002⋅380250000
=−4(514⋅14958268416−1300004+735002⋅380250000−1300002⋅380250000)
−4(514⋅14958268416−1300004+735002⋅380250000−1300002⋅380250000)وسٌع:−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000
−4(514⋅14958268416−1300004+735002⋅380250000−1300002⋅380250000)
فعّل قانون ضرب الأقواس=(−4)⋅514⋅14958268416+(−4)(−1300004)+(−4)⋅735002⋅380250000+(−4)(−1300002⋅380250000)
فعّل قوانين سالب-موجب+(−a)=−a,(−a)(−b)=ab=−514⋅4⋅14958268416+1300004⋅4−735002⋅4⋅380250000+1300002⋅4⋅380250000
−514⋅4⋅14958268416+1300004⋅4−735002⋅4⋅380250000+1300002⋅4⋅380250000بسّط:−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000
−514⋅4⋅14958268416+1300004⋅4−735002⋅4⋅380250000+1300002⋅4⋅380250000
4⋅14958268416=59833073664:اضرب الأعداد=−514⋅59833073664+1300004⋅4−735002⋅4⋅380250000+1300002⋅4⋅380250000
4⋅380250000=1521000000:اضرب الأعداد=−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000
=−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000
=−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000
=28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000
=28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000
u1,2=2(−1300002−380250000)−2866500000±28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000
Separate the solutionsu1=2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000,u2=2(−1300002−380250000)−2866500000−28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000
u=2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000
u=2(−1300002−380250000)−2866500000−28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000:−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000+2866500000
2(−1300002−380250000)−2866500000−28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000
−b−a=ba : استخدم ميزات الكسور التالية−2866500000−28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000=−(1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000+2866500000)=−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000+2866500000
−ba=−ba : استخدم ميزات الكسور التالية=−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000+2866500000
حلول المعادلة التربيعيّة هيu=2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000,u=−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000+2866500000
u=cos(x)استبدل مجددًاcos(x)=2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000,cos(x)=−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000+2866500000
cos(x)=2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000,cos(x)=−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000+2866500000
cos(x)=2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000:x=arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000)+2πn,x=−arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000)+2πn
cos(x)=2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000
Apply trig inverse properties
cos(x)=2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000
cos(x)=2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000:حلول عامّة لـcos(x)=−a⇒x=arccos(−a)+2πn,x=−arccos(−a)+2πnx=arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000)+2πn,x=−arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000)+2πn
x=arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000)+2πn,x=−arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000)+2πn
cos(x)=−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000+2866500000:x=arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000+2866500000)+2πn,x=2π−arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000+2866500000)+2πn
cos(x)=−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000+2866500000
Apply trig inverse properties
cos(x)=−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000+2866500000
cos(x)=−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000+2866500000:حلول عامّة لـcos(x)=a⇒x=arccos(a)+2πn,x=2π−arccos(a)+2πnx=arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000+2866500000)+2πn,x=2π−arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000+2866500000)+2πn
x=arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000+2866500000)+2πn,x=2π−arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000+2866500000)+2πn
وحّد الحلولx=arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000)+2πn,x=−arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000)+2πn,x=arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000+2866500000)+2πn,x=2π−arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000+2866500000)+2πn
تأكّد من صحّة الحلول عن طريق تعويضها في المعادلة الأصليّة
للتحقّق من دقّة الحلول 130000sin(x)+0.15130000cos(x)=73500عوّض الحلول في
إلغي الحلول التي تعطي قضيّة كذب
arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000)+2πnافحص الحل:صحيح
arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000)+2πn
n=1استبدلarccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000)+2π1
x=arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000)+2π1عوّض ,130000sin(x)+0.15130000cos(x)=73500في130000sin(arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000)+2π1)+0.15⋅130000cos(arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000)+2π1)=73500
بسّط73500=73500
⇒صحيح
−arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000)+2πnافحص الحل:خطأ
−arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000)+2πn
n=1استبدل−arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000)+2π1
x=−arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000)+2π1عوّض ,130000sin(x)+0.15130000cos(x)=73500في130000sin(−arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000)+2π1)+0.15⋅130000cos(−arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000)+2π1)=73500
بسّط−102241.68342…=73500
⇒خطأ
arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000+2866500000)+2πnافحص الحل:صحيح
arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000+2866500000)+2πn
n=1استبدلarccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000+2866500000)+2π1
x=arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000+2866500000)+2π1عوّض ,130000sin(x)+0.15130000cos(x)=73500في130000sin(arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000+2866500000)+2π1)+0.15⋅130000cos(arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000+2866500000)+2π1)=73500
بسّط73500=73500
⇒صحيح
2π−arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000+2866500000)+2πnافحص الحل:خطأ
2π−arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000+2866500000)+2πn
n=1استبدل2π−arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000+2866500000)+2π1
x=2π−arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000+2866500000)+2π1عوّض ,130000sin(x)+0.15130000cos(x)=73500في130000sin(2π−arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000+2866500000)+2π1)+0.15⋅130000cos(2π−arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000+2866500000)+2π1)=73500
بسّط−38288.87892…=73500
⇒خطأ
x=arccos(2(−1300002−380250000)−2866500000+28665000002−514⋅59833073664+1300004⋅4−735002⋅1521000000+1300002⋅1521000000)+2πn,x=arccos(−2(−1300002−380250000)1300004⋅4+28665000002+1300002⋅1521000000−514⋅59833073664−735002⋅1521000000+2866500000)+2πn
أظهر الحلّ بالتمثيل العشريّx=2.39936…+2πn,x=0.44444…+2πn