Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

prove tan(x)csc(x)sec(x)=tan^2(x)+1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

prove tan(x)csc(x)sec(x)=tan2(x)+1

Solution

True
Solution steps
tan(x)csc(x)sec(x)=tan2(x)+1
Manipulating left sidetan(x)csc(x)sec(x)
Express with sin, cos
csc(x)sec(x)tan(x)
Use the basic trigonometric identity: csc(x)=sin(x)1​=sin(x)1​sec(x)tan(x)
Use the basic trigonometric identity: sec(x)=cos(x)1​=sin(x)1​⋅cos(x)1​tan(x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=sin(x)1​⋅cos(x)1​⋅cos(x)sin(x)​
Simplify sin(x)1​⋅cos(x)1​⋅cos(x)sin(x)​:cos2(x)1​
sin(x)1​⋅cos(x)1​⋅cos(x)sin(x)​
Multiply fractions: ba​⋅dc​=b⋅da⋅c​=sin(x)cos(x)cos(x)1⋅1⋅sin(x)​
Cancel the common factor: sin(x)=cos(x)cos(x)1⋅1​
Multiply the numbers: 1⋅1=1=cos(x)cos(x)1​
cos(x)cos(x)=cos2(x)
cos(x)cos(x)
Apply exponent rule: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=cos1+1(x)
Add the numbers: 1+1=2=cos2(x)
=cos2(x)1​
=cos2(x)1​
=cos2(x)1​
Manipulating right sidetan2(x)+1
Express with sin, cos
1+tan2(x)
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​=1+(cos(x)sin(x)​)2
Simplify 1+(cos(x)sin(x)​)2:cos2(x)cos2(x)+sin2(x)​
1+(cos(x)sin(x)​)2
Apply exponent rule: (ba​)c=bcac​=1+cos2(x)sin2(x)​
Convert element to fraction: 1=cos2(x)1cos2(x)​=cos2(x)1⋅cos2(x)​+cos2(x)sin2(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos2(x)1⋅cos2(x)+sin2(x)​
Multiply: 1⋅cos2(x)=cos2(x)=cos2(x)cos2(x)+sin2(x)​
=cos2(x)cos2(x)+sin2(x)​
=cos2(x)cos2(x)+sin2(x)​
Rewrite using trig identities
cos2(x)cos2(x)+sin2(x)​
Use the Pythagorean identity: cos2(x)+sin2(x)=1=cos2(x)1​
=cos2(x)1​
We showed that the two sides could take the same form⇒True

Popular Examples

prove 1/(cos(-x))-tan(-x)sin(-x)=cos(x)prove cos(15)=cos(45-30)prove (sin(2x))/(1-cos(2x))=2csc(2x)-tan(x)prove tan(x)=tan(x)*csc^2(x)+cot(-x)prove (1-cos(2θ)+sin(2θ))/(1+cos(2θ)+sin(2θ))=tan(θ)

Frequently Asked Questions (FAQ)

  • Is tan(x)csc(x)sec(x)=tan^2(x)+1 ?

    The answer to whether tan(x)csc(x)sec(x)=tan^2(x)+1 is True
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024