Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

beweisen sin(3u)=sin(u)(3-4sin^2(u))

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

beweisen sin(3u)=sin(u)(3−4sin2(u))

Lösung

Wahr
Schritte zur Lösung
sin(3u)=sin(u)(3−4sin2(u))
Manipuliere die linke Seitesin(3u)
Umschreiben mit Hilfe von Trigonometrie-Identitäten
sin(3u)
Verwende die folgenden Identitäten:sin(3x)=3sin(x)−4sin3(x)
sin(3x)
Umschreiben mit Hilfe von Trigonometrie-Identitäten
sin(3x)
Schreibe um=sin(2x+x)
Benutze die Identität der Winkelsumme: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=sin(2x)cos(x)+cos(2x)sin(x)
Verwende die Doppelwinkelidentität: sin(2x)=2sin(x)cos(x)=cos(2x)sin(x)+cos(x)2sin(x)cos(x)
Vereinfache cos(2x)sin(x)+cos(x)⋅2sin(x)cos(x):sin(x)cos(2x)+2cos2(x)sin(x)
cos(2x)sin(x)+cos(x)2sin(x)cos(x)
cos(x)⋅2sin(x)cos(x)=2cos2(x)sin(x)
cos(x)2sin(x)cos(x)
Wende Exponentenregel an: ab⋅ac=ab+ccos(x)cos(x)=cos1+1(x)=2sin(x)cos1+1(x)
Addiere die Zahlen: 1+1=2=2sin(x)cos2(x)
=sin(x)cos(2x)+2cos2(x)sin(x)
=sin(x)cos(2x)+2cos2(x)sin(x)
=sin(x)cos(2x)+2cos2(x)sin(x)
Verwende die Doppelwinkelidentität: cos(2x)=1−2sin2(x)=(1−2sin2(x))sin(x)+2cos2(x)sin(x)
Verwende die Pythagoreische Identität: cos2(x)+sin2(x)=1cos2(x)=1−sin2(x)=(1−2sin2(x))sin(x)+2(1−sin2(x))sin(x)
Multipliziere aus (1−2sin2(x))sin(x)+2(1−sin2(x))sin(x):−4sin3(x)+3sin(x)
(1−2sin2(x))sin(x)+2(1−sin2(x))sin(x)
=sin(x)(1−2sin2(x))+2sin(x)(1−sin2(x))
Multipliziere aus sin(x)(1−2sin2(x)):sin(x)−2sin3(x)
sin(x)(1−2sin2(x))
Wende das Distributivgesetz an: a(b−c)=ab−aca=sin(x),b=1,c=2sin2(x)=sin(x)1−sin(x)2sin2(x)
=1sin(x)−2sin2(x)sin(x)
Vereinfache 1⋅sin(x)−2sin2(x)sin(x):sin(x)−2sin3(x)
1sin(x)−2sin2(x)sin(x)
1⋅sin(x)=sin(x)
1sin(x)
Multipliziere: 1⋅sin(x)=sin(x)=sin(x)
2sin2(x)sin(x)=2sin3(x)
2sin2(x)sin(x)
Wende Exponentenregel an: ab⋅ac=ab+csin2(x)sin(x)=sin2+1(x)=2sin2+1(x)
Addiere die Zahlen: 2+1=3=2sin3(x)
=sin(x)−2sin3(x)
=sin(x)−2sin3(x)
=sin(x)−2sin3(x)+2(1−sin2(x))sin(x)
Multipliziere aus 2sin(x)(1−sin2(x)):2sin(x)−2sin3(x)
2sin(x)(1−sin2(x))
Wende das Distributivgesetz an: a(b−c)=ab−aca=2sin(x),b=1,c=sin2(x)=2sin(x)1−2sin(x)sin2(x)
=2⋅1sin(x)−2sin2(x)sin(x)
Vereinfache 2⋅1⋅sin(x)−2sin2(x)sin(x):2sin(x)−2sin3(x)
2⋅1sin(x)−2sin2(x)sin(x)
2⋅1⋅sin(x)=2sin(x)
2⋅1sin(x)
Multipliziere die Zahlen: 2⋅1=2=2sin(x)
2sin2(x)sin(x)=2sin3(x)
2sin2(x)sin(x)
Wende Exponentenregel an: ab⋅ac=ab+csin2(x)sin(x)=sin2+1(x)=2sin2+1(x)
Addiere die Zahlen: 2+1=3=2sin3(x)
=2sin(x)−2sin3(x)
=2sin(x)−2sin3(x)
=sin(x)−2sin3(x)+2sin(x)−2sin3(x)
Vereinfache sin(x)−2sin3(x)+2sin(x)−2sin3(x):−4sin3(x)+3sin(x)
sin(x)−2sin3(x)+2sin(x)−2sin3(x)
Fasse gleiche Terme zusammen=−2sin3(x)−2sin3(x)+sin(x)+2sin(x)
Addiere gleiche Elemente: −2sin3(x)−2sin3(x)=−4sin3(x)=−4sin3(x)+sin(x)+2sin(x)
Addiere gleiche Elemente: sin(x)+2sin(x)=3sin(x)=−4sin3(x)+3sin(x)
=−4sin3(x)+3sin(x)
=−4sin3(x)+3sin(x)
=3sin(x)−4sin3(x)
=3sin(u)−4sin3(u)
=3sin(u)−4sin3(u)
Faktorisiere 3sin(u)−4sin3(u):sin(u)(3−4sin2(u))
3sin(u)−4sin3(u)
Wende Exponentenregel an: ab+c=abacsin3(u)=sin(u)sin2(u)=3sin(u)−4sin(u)sin2(u)
Klammere gleiche Terme aus sin(u)=sin(u)(3−4sin2(u))
=(3−4sin2(u))sin(u)
=sin(u)(3−4sin2(u))
Wir haben gezeigt, dass beide Seiten die gleiche Form annehmen können⇒Wahr

Beliebte Beispiele

beweisen (cos^2(A))/(cos(A)-sin(A))+(sin(A))/(1-cot(A))=sin(A)+cos(A)provecos(A)−sin(A)cos2(A)​+1−cot(A)sin(A)​=sin(A)+cos(A)beweisen cos(x-pi/6)-sin(x+pi/3)=0provecos(x−6π​)−sin(x+3π​)=0beweisen cot^2(α)+1= 1/(sin^2(α))provecot2(α)+1=sin2(α)1​beweisen sin(3x)=3sin(x)cos^2(x)-sin^3(x)provesin(3x)=3sin(x)cos2(x)−sin3(x)beweisen (cos(3x)-cos(5x))/(sin(3x)+sin(5x))=tan(x)provesin(3x)+sin(5x)cos(3x)−cos(5x)​=tan(x)
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024