Lösungen
Integrale RechnerAbleitung RechnerAlgebra RechnerMatrix RechnerMehr...
Grafiken
LiniendiagrammExponentieller GraphQuadratischer GraphSinusdiagrammMehr...
Rechner
BMI-RechnerZinseszins-RechnerProzentrechnerBeschleunigungsrechnerMehr...
Geometrie
Satz des Pythagoras-RechnerKreis Fläche RechnerGleichschenkliges Dreieck RechnerDreiecke RechnerMehr...
AI Chat
Werkzeuge
NotizbuchGruppenSpickzettelArbeitsblätterÜbungenÜberprüfe
de
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Beliebt Trigonometrie >

beweisen sec(2x)=((sec^2(x)))/(2-sec^2(x))

  • Voralgebra
  • Algebra
  • Vorkalkül
  • Rechnen
  • Funktionen
  • Lineare Algebra
  • Trigonometrie
  • Statistik
  • Chemie
  • Ökonomie
  • Umrechnungen

Lösung

beweisen sec(2x)=2−sec2(x)(sec2(x))​

Lösung

Wahr
Schritte zur Lösung
sec(2x)=2−sec2(x)sec2(x)​
Manipuliere die rechte Seite2−sec2(x)sec2(x)​
Drücke mit sin, cos aus
2−sec2(x)sec2(x)​
Verwende die grundlegende trigonometrische Identität: sec(x)=cos(x)1​=2−(cos(x)1​)2(cos(x)1​)2​
Vereinfache 2−(cos(x)1​)2(cos(x)1​)2​:2cos2(x)−11​
2−(cos(x)1​)2(cos(x)1​)2​
(cos(x)1​)2=cos2(x)1​
(cos(x)1​)2
Wende Exponentenregel an: (ba​)c=bcac​=cos2(x)12​
Wende Regel an 1a=112=1=cos2(x)1​
=2−cos2(x)1​(cos(x)1​)2​
(cos(x)1​)2=cos2(x)1​
(cos(x)1​)2
Wende Exponentenregel an: (ba​)c=bcac​=cos2(x)12​
Wende Regel an 1a=112=1=cos2(x)1​
=2−cos2(x)1​cos2(x)1​​
Wende Bruchregel an: acb​​=c⋅ab​=cos2(x)(2−cos2(x)1​)1​
Füge 2−cos2(x)1​zusammen:cos2(x)2cos2(x)−1​
2−cos2(x)1​
Wandle das Element in einen Bruch um: 2=cos2(x)2cos2(x)​=cos2(x)2cos2(x)​−cos2(x)1​
Da die Nenner gleich sind, fasse die Brüche zusammen.: ca​±cb​=ca±b​=cos2(x)2cos2(x)−1​
=cos2(x)2cos2(x)−1​cos2(x)1​
Multipliziere cos2(x)cos2(x)2cos2(x)−1​:2cos2(x)−1
cos2(x)cos2(x)2cos2(x)−1​
Multipliziere Brüche: a⋅cb​=ca⋅b​=cos2(x)(2cos2(x)−1)cos2(x)​
Streiche die gemeinsamen Faktoren: cos2(x)=2cos2(x)−1
=2cos2(x)−11​
=2cos2(x)−11​
=−1+2cos2(x)1​
Umschreiben mit Hilfe von Trigonometrie-Identitäten
−1+2cos2(x)1​
Verwende die Doppelwinkelidentität: 2cos2(x)−1=cos(2x)=cos(2x)1​
=cos(2x)1​
Umschreiben mit Hilfe von Trigonometrie-Identitäten
Verwende die grundlegende trigonometrische Identität: cos(x)=sec(x)1​sec(2x)1​1​
Vereinfache
sec(2x)1​1​
Wende Bruchregel an: cb​1​=bc​=1sec(2x)​
Wende Regel an 1a​=a=sec(2x)
sec(2x)
sec(2x)
Wir haben gezeigt, dass beide Seiten die gleiche Form annehmen können⇒Wahr

Beliebte Beispiele

beweisen sin(x)=0provesin(x)=0beweisen sin(x)=1provesin(x)=1beweisen sin(x+30)+sqrt(3)cos(x+30)=2cos(x)provesin(x+30∘)+3​cos(x+30∘)=2cos(x)beweisen (8csc(-x))/(sec(-x))=-8cot(x)provesec(−x)8csc(−x)​=−8cot(x)beweisen cos(α-β)=cos(α)cos(β)+sin(α)sin(β)provecos(α−β)=cos(α)cos(β)+sin(α)sin(β)
LernwerkzeugeKI-Mathe-LöserAI ChatArbeitsblätterÜbungenSpickzettelRechnerGrafikrechnerGeometrie-RechnerLösung überprüfen
AppsSymbolab App (Android)Grafikrechner (Android)Übungen (Android)Symbolab App (iOS)Grafikrechner (iOS)Übungen (iOS)Chrome-Erweiterung
UnternehmenÜber SymbolabBlogHilfe
LegalDatenschutzbestimmungenService TermsCookiesCookie-EinstellungenVerkaufen oder teilen Sie meine persönlichen Daten nichtUrheberrecht, Community-Richtlinien, DSA und andere rechtliche RessourcenLearneo Rechtszentrum
Soziale Medien
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024