Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2sin^2(x)-5sin(x)-3>= 0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2sin2(x)−5sin(x)−3≥0

Solution

−65π​+2πn≤x≤−6π​+2πn
+2
Interval Notation
[−65π​+2πn,−6π​+2πn]
Decimal
−2.61799…+2πn≤x≤−0.52359…+2πn
Solution steps
2sin2(x)−5sin(x)−3≥0
Let: u=sin(x)2u2−5u−3≥0
2u2−5u−3≥0:u≤−21​oru≥3
2u2−5u−3≥0
Factor 2u2−5u−3:(2u+1)(u−3)
2u2−5u−3
Break the expression into groups
2u2−5u−3
Definition
Factors of 6:1,2,3,6
6
Divisors (Factors)
Find the Prime factors of 6:2,3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Add the prime factors: 2,3
Add 1 and the number 6 itself1,6
The factors of 61,2,3,6
Negative factors of 6:−1,−2,−3,−6
Multiply the factors by −1 to get the negative factors−1,−2,−3,−6
For every two factors such that u∗v=−6,check if u+v=−5
Check u=1,v=−6:u∗v=−6,u+v=−5⇒TrueCheck u=2,v=−3:u∗v=−6,u+v=−1⇒False
u=1,v=−6
Group into (ax2+ux)+(vx+c)(2u2+u)+(−6u−3)
=(2u2+u)+(−6u−3)
Factor out ufrom 2u2+u:u(2u+1)
2u2+u
Apply exponent rule: ab+c=abacu2=uu=2uu+u
Factor out common term u=u(2u+1)
Factor out −3from −6u−3:−3(2u+1)
−6u−3
Rewrite 6 as 3⋅2=−3⋅2u−3
Factor out common term −3=−3(2u+1)
=u(2u+1)−3(2u+1)
Factor out common term 2u+1=(2u+1)(u−3)
(2u+1)(u−3)≥0
Identify the intervals
Find the signs of the factors of (2u+1)(u−3)
Find the signs of 2u+1
2u+1=0:u=−21​
2u+1=0
Move 1to the right side
2u+1=0
Subtract 1 from both sides2u+1−1=0−1
Simplify2u=−1
2u=−1
Divide both sides by 2
2u=−1
Divide both sides by 222u​=2−1​
Simplifyu=−21​
u=−21​
2u+1<0:u<−21​
2u+1<0
Move 1to the right side
2u+1<0
Subtract 1 from both sides2u+1−1<0−1
Simplify2u<−1
2u<−1
Divide both sides by 2
2u<−1
Divide both sides by 222u​<2−1​
Simplifyu<−21​
u<−21​
2u+1>0:u>−21​
2u+1>0
Move 1to the right side
2u+1>0
Subtract 1 from both sides2u+1−1>0−1
Simplify2u>−1
2u>−1
Divide both sides by 2
2u>−1
Divide both sides by 222u​>2−1​
Simplifyu>−21​
u>−21​
Find the signs of u−3
u−3=0:u=3
u−3=0
Move 3to the right side
u−3=0
Add 3 to both sidesu−3+3=0+3
Simplifyu=3
u=3
u−3<0:u<3
u−3<0
Move 3to the right side
u−3<0
Add 3 to both sidesu−3+3<0+3
Simplifyu<3
u<3
u−3>0:u>3
u−3>0
Move 3to the right side
u−3>0
Add 3 to both sidesu−3+3>0+3
Simplifyu>3
u>3
Summarize in a table:2u+1u−3(2u+1)(u−3)​u<−21​−−+​u=−21​0−0​−21​<u<3+−−​u=3+00​u>3+++​​
Identify the intervals that satisfy the required condition: ≥0u<−21​oru=−21​oru=3oru>3
Merge Overlapping Intervals
u≤−21​oru=3oru>3
The union of two intervals is the set of numbers which are in either interval
u<−21​oru=−21​
u≤−21​
The union of two intervals is the set of numbers which are in either interval
u≤−21​oru=3
u≤−21​oru=3
The union of two intervals is the set of numbers which are in either interval
u≤−21​oru=3oru>3
u≤−21​oru≥3
u≤−21​oru≥3
u≤−21​oru≥3
u≤−21​oru≥3
Substitute back u=sin(x)sin(x)≤−21​orsin(x)≥3
sin(x)≤−21​:−65π​+2πn≤x≤−6π​+2πn
sin(x)≤−21​
For sin(x)≤a, if −1<a<1 then −π−arcsin(a)+2πn≤x≤arcsin(a)+2πn−π−arcsin(−21​)+2πn≤x≤arcsin(−21​)+2πn
Simplify −π−arcsin(−21​):−65π​
−π−arcsin(−21​)
arcsin(−21​)=−6π​
arcsin(−21​)
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−21​)=−arcsin(21​)=−arcsin(21​)
Use the following trivial identity:arcsin(21​)=6π​
arcsin(21​)
x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​
=6π​
=−6π​
=−π−(−6π​)
Simplify
−π−(−6π​)
Apply rule −(−a)=a=−π+6π​
Convert element to fraction: π=6π6​=−6π6​+6π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=6−π6+π​
Add similar elements: −6π+π=−5π=6−5π​
Apply the fraction rule: b−a​=−ba​=−65π​
=−65π​
Simplify arcsin(−21​):−6π​
arcsin(−21​)
Use the following property: arcsin(−x)=−arcsin(x)arcsin(−21​)=−arcsin(21​)=−arcsin(21​)
Use the following trivial identity:arcsin(21​)=6π​
arcsin(21​)
x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​
=6π​
=−6π​
−65π​+2πn≤x≤−6π​+2πn
sin(x)≥3:False for all x∈R
sin(x)≥3
Range of sin(x):−1≤sin(x)≤1
Function range definition
The range of the basic sinfunction is −1≤sin(x)≤1−1≤sin(x)≤1
sin(x)≥3and−1≤sin(x)≤1:False
Let y=sin(x)
Combine the intervalsy≥3and−1≤y≤1
Merge Overlapping Intervals
y≥3and−1≤y≤1
The intersection of two intervals is the set of numbers which are in both intervals
y≥3and−1≤y≤1
Falseforally∈R
Falseforally∈R
NoSolutionforx∈R
Falseforallx∈R
Combine the intervals−65π​+2πn≤x≤−6π​+2πnorFalseforallx∈R
Merge Overlapping Intervals−65π​+2πn≤x≤−6π​+2πn

Popular Examples

sin(x^2+y^2)>= 0tan(x)<1cos(x)>0.5cos(x)<1sin(2x)>= 0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024