Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(x+pi/3)>1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(x+3π​)>1

Solution

−12π​+πn<x<6π​+πn
+2
Interval Notation
(−12π​+πn,6π​+πn)
Decimal
−0.26179…+πn<x<0.52359…+πn
Solution steps
tan(x+3π​)>1
If tan(x)>athen arctan(a)+πn<x<2π​+πnarctan(1)+πn<(x+3π​)<2π​+πn
If a<u<bthen a<uandu<barctan(1)+πn<x+3π​andx+3π​<2π​+πn
arctan(1)+πn<x+3π​:x>πn−12π​
arctan(1)+πn<x+3π​
Switch sidesx+3π​>arctan(1)+πn
Simplify arctan(1)+πn:4π​+πn
arctan(1)+πn
Use the following trivial identity:arctan(1)=4π​x033​​13​​arctan(x)06π​4π​3π​​arctan(x)0∘30∘45∘60∘​​=4π​+πn
x+3π​>4π​+πn
Move 3π​to the right side
x+3π​>4π​+πn
Subtract 3π​ from both sidesx+3π​−3π​>4π​+πn−3π​
Simplify
x+3π​−3π​>4π​+πn−3π​
Simplify x+3π​−3π​:x
x+3π​−3π​
Add similar elements: 3π​−3π​>0
=x
Simplify 4π​+πn−3π​:πn−12π​
4π​+πn−3π​
Group like terms=πn+4π​−3π​
Least Common Multiplier of 4,3:12
4,3
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Multiply each factor the greatest number of times it occurs in either 4 or 3=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 4π​:multiply the denominator and numerator by 34π​=4⋅3π3​=12π3​
For 3π​:multiply the denominator and numerator by 43π​=3⋅4π4​=12π4​
=12π3​−12π4​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12π3−π4​
Add similar elements: 3π−4π=−π=12−π​
Apply the fraction rule: b−a​=−ba​=πn−12π​
x>πn−12π​
x>πn−12π​
x>πn−12π​
x+3π​<2π​+πn:x<πn+6π​
x+3π​<2π​+πn
Move 3π​to the right side
x+3π​<2π​+πn
Subtract 3π​ from both sidesx+3π​−3π​<2π​+πn−3π​
Simplify
x+3π​−3π​<2π​+πn−3π​
Simplify x+3π​−3π​:x
x+3π​−3π​
Add similar elements: 3π​−3π​<0
=x
Simplify 2π​+πn−3π​:πn+6π​
2π​+πn−3π​
Group like terms=πn+2π​−3π​
Least Common Multiplier of 2,3:6
2,3
Least Common Multiplier (LCM)
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Prime factorization of 3:3
3
3 is a prime number, therefore no factorization is possible=3
Multiply each factor the greatest number of times it occurs in either 2 or 3=2⋅3
Multiply the numbers: 2⋅3=6=6
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 6
For 2π​:multiply the denominator and numerator by 32π​=2⋅3π3​=6π3​
For 3π​:multiply the denominator and numerator by 23π​=3⋅2π2​=6π2​
=6π3​−6π2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=6π3−π2​
Add similar elements: 3π−2π=π=πn+6π​
x<πn+6π​
x<πn+6π​
x<πn+6π​
Combine the intervalsx>πn−12π​andx<πn+6π​
Merge Overlapping Intervals−12π​+πn<x<6π​+πn

Popular Examples

0<= arctan(x)2cos(x)>=-11-2cos(x)<0[0.2pi]-3cos(x)+1>=-12cos^2(x)-3cos(x)+1<0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024