Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

(1+tan(x))/(1-tan(x))>0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

1−tan(x)1+tan(x)​>0

Solution

πn≤x<4π​+πnor43π​+πn<x<π+πn
+2
Interval Notation
[πn,4π​+πn)∪(43π​+πn,π+πn)
Decimal
πn≤x<0.78539…+πnor2.35619…+πn<x<3.14159…+πn
Solution steps
1−tan(x)1+tan(x)​>0
Let: u=tan(x)1−u1+u​>0
1−u1+u​>0:−1<u<1
1−u1+u​>0
Identify the intervals
Find the signs of the factors of 1−u1+u​
Find the signs of 1+u
1+u=0:u=−1
1+u=0
Move 1to the right side
1+u=0
Subtract 1 from both sides1+u−1=0−1
Simplifyu=−1
u=−1
1+u<0:u<−1
1+u<0
Move 1to the right side
1+u<0
Subtract 1 from both sides1+u−1<0−1
Simplifyu<−1
u<−1
1+u>0:u>−1
1+u>0
Move 1to the right side
1+u>0
Subtract 1 from both sides1+u−1>0−1
Simplifyu>−1
u>−1
Find the signs of 1−u
1−u=0:u=1
1−u=0
Move 1to the right side
1−u=0
Subtract 1 from both sides1−u−1=0−1
Simplify−u=−1
−u=−1
Divide both sides by −1
−u=−1
Divide both sides by −1−1−u​=−1−1​
Simplifyu=1
u=1
1−u<0:u>1
1−u<0
Move 1to the right side
1−u<0
Subtract 1 from both sides1−u−1<0−1
Simplify−u<−1
−u<−1
Multiply both sides by −1
−u<−1
Multiply both sides by -1 (reverse the inequality)(−u)(−1)>(−1)(−1)
Simplifyu>1
u>1
1−u>0:u<1
1−u>0
Move 1to the right side
1−u>0
Subtract 1 from both sides1−u−1>0−1
Simplify−u>−1
−u>−1
Multiply both sides by −1
−u>−1
Multiply both sides by -1 (reverse the inequality)(−u)(−1)<(−1)(−1)
Simplifyu<1
u<1
Find singularity points
Find the zeros of the denominator 1−u:u=1
1−u=0
Move 1to the right side
1−u=0
Subtract 1 from both sides1−u−1=0−1
Simplify−u=−1
−u=−1
Divide both sides by −1
−u=−1
Divide both sides by −1−1−u​=−1−1​
Simplifyu=1
u=1
Summarize in a table:1+u1−u1−u1+u​​u<−1−+−​u=−10+0​−1<u<1+++​u=1+0Undefined​u>1+−−​​
Identify the intervals that satisfy the required condition: >0−1<u<1
−1<u<1
−1<u<1
Substitute back u=tan(x)−1<tan(x)<1
If a<u<bthen a<uandu<b−1<tan(x)andtan(x)<1
−1<tan(x):−4π​+πn<x<2π​+πn
−1<tan(x)
Switch sidestan(x)>−1
If tan(x)>athen arctan(a)+πn<x<2π​+πnarctan(−1)+πn<x<2π​+πn
Simplify arctan(−1):−4π​
arctan(−1)
Use the following property: arctan(−x)=−arctan(x)arctan(−1)=−arctan(1)=−arctan(1)
Use the following trivial identity:arctan(1)=4π​
arctan(1)
x033​​13​​arctan(x)06π​4π​3π​​arctan(x)0∘30∘45∘60∘​​
=4π​
=−4π​
−4π​+πn<x<2π​+πn
tan(x)<1:−2π​+πn<x<4π​+πn
tan(x)<1
If tan(x)<athen −2π​+πn<x<arctan(a)+πn−2π​+πn<x<arctan(1)+πn
Simplify arctan(1):4π​
arctan(1)
Use the following trivial identity:arctan(1)=4π​x033​​13​​arctan(x)06π​4π​3π​​arctan(x)0∘30∘45∘60∘​​=4π​
−2π​+πn<x<4π​+πn
Combine the intervals−4π​+πn<x<2π​+πnand−2π​+πn<x<4π​+πn
Merge Overlapping Intervalsπn≤x<4π​+πnor43π​+πn<x<π+πn

Popular Examples

0.96(cos(x))^2<= 0.83sin(3x)cos(3x)-1/4 >0cos(-θ)<01+cos(x)>0cos(2x)<-(sqrt(2))/2 ,0<= x<= 2pi
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024