Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sin(x)-cos(x)>= 1

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sin(x)−cos(x)≥1

Solution

2π​+2πn≤x≤π+2πn
+2
Interval Notation
[2π​+2πn,π+2πn]
Decimal
1.57079…+2πn≤x≤3.14159…+2πn
Solution steps
sin(x)−cos(x)≥1
Use the following identity: −cos(x)+sin(x)=−2​cos(4π​+x)−2​cos(4π​+x)≥1
Multiply both sides by −1
−2​cos(4π​+x)≥1
Multiply both sides by -1 (reverse the inequality)(−2​cos(4π​+x))(−1)≤1⋅(−1)
Simplify2​cos(4π​+x)≤−1
2​cos(4π​+x)≤−1
Divide both sides by 2​
2​cos(4π​+x)≤−1
Divide both sides by 2​2​2​cos(4π​+x)​≤2​−1​
Simplify
2​2​cos(4π​+x)​≤2​−1​
Simplify 2​2​cos(4π​+x)​:cos(4π​+x)
2​2​cos(4π​+x)​
Cancel the common factor: 2​=cos(4π​+x)
Simplify 2​−1​:−22​​
2​−1​
Apply the fraction rule: b−a​=−ba​=−2​1​
Rationalize −2​1​:−22​​
−2​1​
Multiply by the conjugate 2​2​​=−2​2​1⋅2​​
1⋅2​=2​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−22​​
=−22​​
cos(4π​+x)≤−22​​
cos(4π​+x)≤−22​​
cos(4π​+x)≤−22​​
For cos(x)≤a, if −1<a<1 then arccos(a)+2πn≤x≤2π−arccos(a)+2πnarccos(−22​​)+2πn≤(4π​+x)≤2π−arccos(−22​​)+2πn
If a≤u≤bthen a≤uandu≤barccos(−22​​)+2πn≤4π​+xand4π​+x≤2π−arccos(−22​​)+2πn
arccos(−22​​)+2πn≤4π​+x:x≥2πn+2π​
arccos(−22​​)+2πn≤4π​+x
Switch sides4π​+x≥arccos(−22​​)+2πn
Simplify arccos(−22​​)+2πn:43π​+2πn
arccos(−22​​)+2πn
Use the following trivial identity:arccos(−22​​)=43π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=43π​+2πn
4π​+x≥43π​+2πn
Move 4π​to the right side
4π​+x≥43π​+2πn
Subtract 4π​ from both sides4π​+x−4π​≥43π​+2πn−4π​
Simplify
4π​+x−4π​≥43π​+2πn−4π​
Simplify 4π​+x−4π​:x
4π​+x−4π​
Add similar elements: 4π​−4π​≥0
=x
Simplify 43π​+2πn−4π​:2πn+2π​
43π​+2πn−4π​
Group like terms=2πn−4π​+43π​
Combine the fractions −4π​+43π​:2π​
Apply rule ca​±cb​=ca±b​=4−π+3π​
Add similar elements: −π+3π=2π=42π​
Cancel the common factor: 2=2π​
=2πn+2π​
x≥2πn+2π​
x≥2πn+2π​
x≥2πn+2π​
4π​+x≤2π−arccos(−22​​)+2πn:x≤π+2πn
4π​+x≤2π−arccos(−22​​)+2πn
Simplify 2π−arccos(−22​​)+2πn:2π−43π​+2πn
2π−arccos(−22​​)+2πn
Use the following trivial identity:arccos(−22​​)=43π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=2π−43π​+2πn
4π​+x≤2π−43π​+2πn
Move 4π​to the right side
4π​+x≤2π−43π​+2πn
Subtract 4π​ from both sides4π​+x−4π​≤2π−43π​+2πn−4π​
Simplify
4π​+x−4π​≤2π−43π​+2πn−4π​
Simplify 4π​+x−4π​:x
4π​+x−4π​
Add similar elements: 4π​−4π​≤0
=x
Simplify 2π−43π​+2πn−4π​:π+2πn
2π−43π​+2πn−4π​
Group like terms=2π+2πn−4π​−43π​
Combine the fractions −4π​−43π​:−π
Apply rule ca​±cb​=ca±b​=4−π−3π​
Add similar elements: −π−3π=−4π=4−4π​
Apply the fraction rule: b−a​=−ba​=−44π​
Divide the numbers: 44​=1=−π
=2π+2πn−π
Group like terms=2π−π+2πn
Add similar elements: 2π−π=π=π+2πn
x≤π+2πn
x≤π+2πn
x≤π+2πn
Combine the intervalsx≥2πn+2π​andx≤π+2πn
Merge Overlapping Intervals2π​+2πn≤x≤π+2πn

Popular Examples

3cos(t)>= 0cos(x)-(sqrt(2))/2 <= 04*sin^2(X)-2<06cos(2x)<0-(sqrt(3))/2 sin(x)-1/2 cos(x)<= 0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024