Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

((4*cos^2(x)-3))/((sin(x)+cos(x)+5))<0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

(sin(x)+cos(x)+5)(4⋅cos2(x)−3)​<0

Solution

6π​+2πn<x<65π​+2πnor67π​+2πn<x<611π​+2πn
+2
Interval Notation
(6π​+2πn,65π​+2πn)∪(67π​+2πn,611π​+2πn)
Decimal
0.52359…+2πn<x<2.61799…+2πnor3.66519…+2πn<x<5.75958…+2πn
Solution steps
sin(x)+cos(x)+54cos2(x)−3​<0
Use the following identity: cos2(x)+sin2(x)=1Therefore cos2(x)=1−sin2(x)sin(x)+cos(x)+54(1−sin2(x))−3​<0
Simplify sin(x)+cos(x)+54(1−sin2(x))−3​:sin(x)+cos(x)+5−4sin2(x)+1​
sin(x)+cos(x)+54(1−sin2(x))−3​
Expand 4(1−sin2(x))−3:−4sin2(x)+1
4(1−sin2(x))−3
Expand 4(1−sin2(x)):4−4sin2(x)
4(1−sin2(x))
Apply the distributive law: a(b−c)=ab−aca=4,b=1,c=sin2(x)=4⋅1−4sin2(x)
Multiply the numbers: 4⋅1=4=4−4sin2(x)
=4−4sin2(x)−3
Simplify 4−4sin2(x)−3:−4sin2(x)+1
4−4sin2(x)−3
Group like terms=−4sin2(x)+4−3
Add/Subtract the numbers: 4−3=1=−4sin2(x)+1
=−4sin2(x)+1
=sin(x)+cos(x)+5−4sin2(x)+1​
sin(x)+cos(x)+5−4sin2(x)+1​<0
Periodicity of sin(x)+cos(x)+5−4sin2(x)+1​:2π
sin(x)+cos(x)+5−4sin2(x)+1​is composed of the following functions and periods:sin(x)with periodicity of 2π
The compound periodicity is:=2π
Find the zeroes and undifined points of sin(x)+cos(x)+5−4sin2(x)+1​for 0≤x<2π
To find the zeroes, set the inequality to zerosin(x)+cos(x)+5−4sin2(x)+1​=0
sin(x)+cos(x)+5−4sin2(x)+1​=0,0≤x<2π:x=6π​,x=65π​,x=67π​,x=611π​
sin(x)+cos(x)+5−4sin2(x)+1​=0,0≤x<2π
g(x)f(x)​=0⇒f(x)=0−4sin2(x)+1=0
Solve by substitution
−4sin2(x)+1=0
Let: sin(x)=u−4u2+1=0
−4u2+1=0:u=21​,u=−21​
−4u2+1=0
Move 1to the right side
−4u2+1=0
Subtract 1 from both sides−4u2+1−1=0−1
Simplify−4u2=−1
−4u2=−1
Divide both sides by −4
−4u2=−1
Divide both sides by −4−4−4u2​=−4−1​
Simplifyu2=41​
u2=41​
For x2=f(a) the solutions are x=f(a)​,−f(a)​
u=41​​,u=−41​​
41​​=21​
41​​
Apply radical rule: assuming a≥0,b≥0=4​1​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=21​​
Apply rule 1​=1=21​
−41​​=−21​
−41​​
Simplify 41​​:21​​
41​​
Apply radical rule: assuming a≥0,b≥0=4​1​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=21​​
=−21​​
Apply rule 1​=1=−21​
u=21​,u=−21​
Substitute back u=sin(x)sin(x)=21​,sin(x)=−21​
sin(x)=21​,sin(x)=−21​
sin(x)=21​,0≤x<2π:x=6π​,x=65π​
sin(x)=21​,0≤x<2π
General solutions for sin(x)=21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=6π​+2πn,x=65π​+2πn
x=6π​+2πn,x=65π​+2πn
Solutions for the range 0≤x<2πx=6π​,x=65π​
sin(x)=−21​,0≤x<2π:x=67π​,x=611π​
sin(x)=−21​,0≤x<2π
General solutions for sin(x)=−21​
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=67π​+2πn,x=611π​+2πn
x=67π​+2πn,x=611π​+2πn
Solutions for the range 0≤x<2πx=67π​,x=611π​
Combine all the solutionsx=6π​,x=65π​,x=67π​,x=611π​
Find the undefined points:No Solution
Find the zeros of the denominatorsin(x)+cos(x)+5=0
Rewrite using trig identities
sin(x)+cos(x)+5
sin(x)+cos(x)=2​sin(x+4π​)
sin(x)+cos(x)
Rewrite as=2​(2​1​sin(x)+2​1​cos(x))
Use the following trivial identity: cos(4π​)=2​1​Use the following trivial identity: sin(4π​)=2​1​=2​(cos(4π​)sin(x)+sin(4π​)cos(x))
Use the Angle Sum identity: sin(s+t)=sin(s)cos(t)+cos(s)sin(t)=2​sin(x+4π​)
=5+2​sin(x+4π​)
5+2​sin(x+4π​)=0
Move 5to the right side
5+2​sin(x+4π​)=0
Subtract 5 from both sides5+2​sin(x+4π​)−5=0−5
Simplify2​sin(x+4π​)=−5
2​sin(x+4π​)=−5
Divide both sides by 2​
2​sin(x+4π​)=−5
Divide both sides by 2​2​2​sin(x+4π​)​=2​−5​
Simplify
2​2​sin(x+4π​)​=2​−5​
Simplify 2​2​sin(x+4π​)​:sin(x+4π​)
2​2​sin(x+4π​)​
Cancel the common factor: 2​=sin(x+4π​)
Simplify 2​−5​:−252​​
2​−5​
Apply the fraction rule: b−a​=−ba​=−2​5​
Rationalize −2​5​:−252​​
−2​5​
Multiply by the conjugate 2​2​​=−2​2​52​​
2​2​=2
2​2​
Apply radical rule: a​a​=a2​2​=2=2
=−252​​
=−252​​
sin(x+4π​)=−252​​
sin(x+4π​)=−252​​
sin(x+4π​)=−252​​
−1≤sin(x)≤1NoSolutionforx∈R
6π​,65π​,67π​,611π​
Identify the intervals0<x<6π​,6π​<x<65π​,65π​<x<67π​,67π​<x<611π​,611π​<x<2π
Summarize in a table:−4sin2(x)+1sin(x)+cos(x)+5sin(x)+cos(x)+5−4sin2(x)+1​​x=0+++​0<x<6π​+++​x=6π​0+0​6π​<x<65π​−+−​x=65π​0+0​65π​<x<67π​+++​x=67π​0+0​67π​<x<611π​−+−​x=611π​0+0​611π​<x<2π+++​x=2π+++​​
Identify the intervals that satisfy the required condition: <06π​<x<65π​or67π​<x<611π​
Apply the periodicity of sin(x)+cos(x)+5−4sin2(x)+1​6π​+2πn<x<65π​+2πnor67π​+2πn<x<611π​+2πn

Popular Examples

1/2 <= sin(x),cos(x)<= (sqrt(2))/2sin(θ)<= pi/6tan(x)>= sin(x)1<= tan(x)sin(9x^2)>0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024