Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

tan(x)>= sin(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

tan(x)≥sin(x)

Solution

2πn≤x<2π​+2πnorπ+2πn≤x<23π​+2πn
+2
Interval Notation
[2πn,2π​+2πn)∪[π+2πn,23π​+2πn)
Decimal
2πn≤x<1.57079…+2πnor3.14159…+2πn≤x<4.71238…+2πn
Solution steps
tan(x)≥sin(x)
Move sin(x)to the left side
tan(x)≥sin(x)
Subtract sin(x) from both sidestan(x)−sin(x)≥sin(x)−sin(x)
tan(x)−sin(x)≥0
tan(x)−sin(x)≥0
Periodicity of tan(x)−sin(x):2π
The compound periodicity of the sum of periodic functions is the least common multiplier of the periodstan(x),sin(x)
Periodicity of tan(x):π
Periodicity of tan(x)is π=π
Periodicity of sin(x):2π
Periodicity of sin(x)is 2π=2π
Combine periods: π,2π
=2π
Express with sin, cos
tan(x)−sin(x)≥0
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​cos(x)sin(x)​−sin(x)≥0
cos(x)sin(x)​−sin(x)≥0
Simplify cos(x)sin(x)​−sin(x):cos(x)sin(x)−sin(x)cos(x)​
cos(x)sin(x)​−sin(x)
Convert element to fraction: sin(x)=cos(x)sin(x)cos(x)​=cos(x)sin(x)​−cos(x)sin(x)cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos(x)sin(x)−sin(x)cos(x)​
cos(x)sin(x)−sin(x)cos(x)​≥0
Find the zeroes and undifined points of cos(x)sin(x)−sin(x)cos(x)​for 0≤x<2π
To find the zeroes, set the inequality to zerocos(x)sin(x)−sin(x)cos(x)​=0
cos(x)sin(x)−sin(x)cos(x)​=0,0≤x<2π:x=0,x=π
cos(x)sin(x)−sin(x)cos(x)​=0,0≤x<2π
g(x)f(x)​=0⇒f(x)=0sin(x)−sin(x)cos(x)=0
Factor sin(x)−sin(x)cos(x):−sin(x)(cos(x)−1)
sin(x)−sin(x)cos(x)
Factor out common term −sin(x)=−sin(x)(−1+cos(x))
−sin(x)(cos(x)−1)=0
Solving each part separatelysin(x)=0orcos(x)−1=0
sin(x)=0,0≤x<2π:x=0,x=π
sin(x)=0,0≤x<2π
General solutions for sin(x)=0
sin(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​sin(x)021​22​​23​​123​​22​​21​​xπ67π​45π​34π​23π​35π​47π​611π​​sin(x)0−21​−22​​−23​​−1−23​​−22​​−21​​​
x=0+2πn,x=π+2πn
x=0+2πn,x=π+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn,x=π+2πn
Solutions for the range 0≤x<2πx=0,x=π
cos(x)−1=0,0≤x<2π:x=0
cos(x)−1=0,0≤x<2π
Move 1to the right side
cos(x)−1=0
Add 1 to both sidescos(x)−1+1=0+1
Simplifycos(x)=1
cos(x)=1
General solutions for cos(x)=1
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=0+2πn
x=0+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn
Solutions for the range 0≤x<2πx=0
Combine all the solutionsx=0,x=π
Find the undefined points:x=2π​,x=23π​
Find the zeros of the denominatorcos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
Solutions for the range 0≤x<2πx=2π​,x=23π​
0,2π​,π,23π​
Identify the intervals0<x<2π​,2π​<x<π,π<x<23π​,23π​<x<2π
Summarize in a table:sin(x)−sin(x)cos(x)cos(x)cos(x)sin(x)−sin(x)cos(x)​​x=00+0​0<x<2π​+++​x=2π​+0Undefined​2π​<x<π+−−​x=π0−0​π<x<23π​−−+​x=23π​−0Undefined​23π​<x<2π−+−​x=2π0+0​​
Identify the intervals that satisfy the required condition: ≥0x=0or0<x<2π​orx=πorπ<x<23π​orx=2π
Merge Overlapping Intervals
0≤x<2π​orπ≤x<23π​orx=2π
The union of two intervals is the set of numbers which are in either interval
x=0or0<x<2π​
0≤x<2π​
The union of two intervals is the set of numbers which are in either interval
0≤x<2π​orx=π
0≤x<2π​orx=π
The union of two intervals is the set of numbers which are in either interval
0≤x<2π​orx=πorπ<x<23π​
0≤x<2π​orπ≤x<23π​
The union of two intervals is the set of numbers which are in either interval
0≤x<2π​orπ≤x<23π​orx=2π
0≤x<2π​orπ≤x<23π​orx=2π
0≤x<2π​orπ≤x<23π​orx=2π
Apply the periodicity of tan(x)−sin(x)2πn≤x<2π​+2πnorπ+2πn≤x<23π​+2πn

Popular Examples

1<= tan(x)sin(9x^2)>02cos(2x)-1>00<cos(x)9^{1+sin^2(pix)}+30*9^{cos^2(pix)}<= 117
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024