Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

4cos(2x-30)>0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

4cos(2x−30)>0

Solution

460−π​+πn<x<460+π​+πn
+2
Interval Notation
(460−π​+πn,460+π​+πn)
Decimal
14.21460…+πn<x<15.78539…+πn
Solution steps
4cos(2x−30)>0
Divide both sides by 4
4cos(2x−30)>0
Divide both sides by 444cos(2x−30)​>40​
Simplifycos(2x−30)>0
cos(2x−30)>0
For cos(x)>a, if −1≤a<1 then −arccos(a)+2πn<x<arccos(a)+2πn−arccos(0)+2πn<(2x−30)<arccos(0)+2πn
If a<u<bthen a<uandu<b−arccos(0)+2πn<2x−30and2x−30<arccos(0)+2πn
−arccos(0)+2πn<2x−30:x>460−π​+πn
−arccos(0)+2πn<2x−30
Switch sides2x−30>−arccos(0)+2πn
Simplify −arccos(0)+2πn:−2π​+2πn
−arccos(0)+2πn
Use the following trivial identity:arccos(0)=2π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=−2π​+2πn
2x−30>−2π​+2πn
Move 30to the right side
2x−30>−2π​+2πn
Add 30 to both sides2x−30+30>−2π​+2πn+30
Simplify2x>−2π​+2πn+30
2x>−2π​+2πn+30
Divide both sides by 2
2x>−2π​+2πn+30
Divide both sides by 222x​>−22π​​+22πn​+230​
Simplify
22x​>−22π​​+22πn​+230​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify −22π​​+22πn​+230​:15+πn−4π​
−22π​​+22πn​+230​
Group like terms=230​+22πn​−22π​​
230​=15
230​
Divide the numbers: 230​=15=15
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
22π​​=4π​
22π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅2π​
Multiply the numbers: 2⋅2=4=4π​
=15+πn−4π​
x>15+πn−4π​
x>15+πn−4π​
Simplify 15−4π​:460−π​
15−4π​
Convert element to fraction: 15=415⋅4​=415⋅4​−4π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=415⋅4−π​
Multiply the numbers: 15⋅4=60=460−π​
x>460−π​+πn
x>460−π​+πn
2x−30<arccos(0)+2πn:x<460+π​+πn
2x−30<arccos(0)+2πn
Simplify arccos(0)+2πn:2π​+2πn
arccos(0)+2πn
Use the following trivial identity:arccos(0)=2π​x−1−23​​−22​​−21​021​22​​23​​1​arccos(x)π65π​43π​32π​2π​3π​4π​6π​0​arccos(x)180∘150∘135∘120∘90∘60∘45∘30∘0∘​​=2π​+2πn
2x−30<2π​+2πn
Move 30to the right side
2x−30<2π​+2πn
Add 30 to both sides2x−30+30<2π​+2πn+30
Simplify2x<2π​+2πn+30
2x<2π​+2πn+30
Divide both sides by 2
2x<2π​+2πn+30
Divide both sides by 222x​<22π​​+22πn​+230​
Simplify
22x​<22π​​+22πn​+230​
Simplify 22x​:x
22x​
Divide the numbers: 22​=1=x
Simplify 22π​​+22πn​+230​:15+πn+4π​
22π​​+22πn​+230​
Group like terms=230​+22πn​+22π​​
230​=15
230​
Divide the numbers: 230​=15=15
22πn​=πn
22πn​
Divide the numbers: 22​=1=πn
22π​​=4π​
22π​​
Apply the fraction rule: acb​​=c⋅ab​=2⋅2π​
Multiply the numbers: 2⋅2=4=4π​
=15+πn+4π​
x<15+πn+4π​
x<15+πn+4π​
Simplify 15+4π​:460+π​
15+4π​
Convert element to fraction: 15=415⋅4​=415⋅4​+4π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=415⋅4+π​
Multiply the numbers: 15⋅4=60=460+π​
x<460+π​+πn
x<460+π​+πn
Combine the intervalsx>460−π​+πnandx<460+π​+πn
Merge Overlapping Intervals460−π​+πn<x<460+π​+πn

Popular Examples

sin(a)>1cos(x-y)>04sin(x)cos(x)+1<= 05-5cos^2(x)+2cos(x)>= 0,0<= x<2pi2+cos^2(x)+sin(x)>0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024