Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

2+cos^2(x)+sin(x)>0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

2+cos2(x)+sin(x)>0

Solution

Trueforallx∈R
+1
Interval Notation
(−∞,∞)
Solution steps
2+cos2(x)+sin(x)>0
Use the following identity: cos2(x)+sin2(x)=1Therefore cos2(x)=1−sin2(x)2+1−sin2(x)+sin(x)>0
Simplifysin(x)−sin2(x)+3>0
Let: u=sin(x)u−u2+3>0
u−u2+3>0:2−13​+1​<u<213​+1​
u−u2+3>0
Complete the square u−u2+3:−(u−21​)2+413​
u−u2+3
Write in the standard form ax2+bx+c−u2+u+3
Write −u2+u+3in the form: x2+2ax+a2Factor out −1−(u2−u−3)
2a=−1:a=−21​
2a=−1
Divide both sides by 2
2a=−1
Divide both sides by 222a​=2−1​
Simplifya=−21​
a=−21​
Add and subtract (−21​)2−(u2−u−3+(−21​)2−(−21​)2)
x2+2ax+a2=(x+a)2u2−1u+(−21​)2=(u−21​)2−((u−21​)2−3−(−21​)2)
Simplify−(u−21​)2+413​
−(u−21​)2+413​>0
Move 413​to the right side
−(u−21​)2+413​>0
Subtract 413​ from both sides−(u−21​)2+413​−413​>0−413​
Simplify−(u−21​)2>−413​
−(u−21​)2>−413​
Multiply both sides by −1
−(u−21​)2>−413​
Multiply both sides by -1 (reverse the inequality)(−(u−21​)2)(−1)<(−413​)(−1)
Simplify(u−21​)2<413​
(u−21​)2<413​
For un<a, if nis even then
−413​​<u−21​<413​​
If a<u<bthen a<uandu<b−413​​<u−21​andu−21​<413​​
−413​​<u−21​:u>2−13​+1​
−413​​<u−21​
Switch sidesu−21​>−413​​
Simplify 413​​:213​​
413​​
Apply radical rule: assuming a≥0,b≥0=4​13​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
=213​​
u−21​>−213​​
Move 21​to the right side
u−21​>−213​​
Add 21​ to both sidesu−21​+21​>−213​​+21​
Simplify
u−21​+21​>−213​​+21​
Simplify u−21​+21​:u
u−21​+21​
Add similar elements: −21​+21​>0
=u
Simplify −213​​+21​:2−13​+1​
−213​​+21​
Apply rule ca​±cb​=ca±b​=2−13​+1​
u>2−13​+1​
u>2−13​+1​
u>2−13​+1​
u−21​<413​​:u<213​+1​
u−21​<413​​
Apply radical rule: assuming a≥0,b≥0u−21​<4​13​​
4​=2
4​
Factor the number: 4=22=22​
Apply radical rule: 22​=2=2
u−21​<213​​
Move 21​to the right side
u−21​<213​​
Add 21​ to both sidesu−21​+21​<213​​+21​
Simplify
u−21​+21​<213​​+21​
Simplify u−21​+21​:u
u−21​+21​
Add similar elements: −21​+21​<0
=u
Simplify 213​​+21​:213​+1​
213​​+21​
Apply rule ca​±cb​=ca±b​=213​+1​
u<213​+1​
u<213​+1​
u<213​+1​
Combine the intervalsu>2−13​+1​andu<213​+1​
Merge Overlapping Intervals
u>2−13​+1​andu<213​+1​
The intersection of two intervals is the set of numbers which are in both intervals
u>2−13​+1​andu<213​+1​
2−13​+1​<u<213​+1​
2−13​+1​<u<213​+1​
2−13​+1​<u<213​+1​
Substitute back u=sin(x)2−13​+1​<sin(x)<213​+1​
If a<u<bthen a<uandu<b2−13​+1​<sin(x)andsin(x)<213​+1​
2−13​+1​<sin(x):True for all x∈R
2−13​+1​<sin(x)
Switch sidessin(x)>2−13​+1​
Range of sin(x):−1≤sin(x)≤1
Function range definition
The range of the basic sinfunction is −1≤sin(x)≤1−1≤sin(x)≤1
sin(x)>2−13​+1​and−1≤sin(x)≤1:−1≤sin(x)≤1
Let y=sin(x)
Combine the intervalsy>2−13​+1​and−1≤y≤1
Merge Overlapping Intervals
y>2−13​+1​and−1≤y≤1
The intersection of two intervals is the set of numbers which are in both intervals
y>2−13​+1​and−1≤y≤1
−1≤y≤1
−1≤y≤1
Trueforallx
Trueforallx∈R
sin(x)<213​+1​:True for all x∈R
sin(x)<213​+1​
Range of sin(x):−1≤sin(x)≤1
Function range definition
The range of the basic sinfunction is −1≤sin(x)≤1−1≤sin(x)≤1
sin(x)<213​+1​and−1≤sin(x)≤1:−1≤sin(x)≤1
Let y=sin(x)
Combine the intervalsy<213​+1​and−1≤y≤1
Merge Overlapping Intervals
y<213​+1​and−1≤y≤1
The intersection of two intervals is the set of numbers which are in both intervals
y<213​+1​and−1≤y≤1
−1≤y≤1
−1≤y≤1
Trueforallx
Trueforallx∈R
Combine the intervalsTrueforallx∈RandTrueforallx∈R
Merge Overlapping Intervals
Trueforallx∈RandTrueforallx∈R
The intersection of two intervals is the set of numbers which are in both intervals
True for all x∈RandTrue for all x∈R
Trueforallx∈R
Trueforallx
Trueforallx∈R

Popular Examples

2sin^2(x)-1>010<5sin(pi/6 (x+2))+6arctan(1-|x|)<= 1/2sin(t)< 1/3 ln(1)5-8cos(x)+4cos(2x)<0
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024