Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

5-8cos(x)+4cos(2x)<0

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

5−8cos(x)+4cos(2x)<0

Solution

arccos(42​+2​)+2πn<x<arccos(4−2​+2​)+2πnor−arccos(4−2​+2​)+2π+2πn<x<2π−arccos(42​+2​)+2πn
+2
Interval Notation
(arccos(42​+2​)+2πn,arccos(4−2​+2​)+2πn)∪(−arccos(4−2​+2​)+2π+2πn,2π−arccos(42​+2​)+2πn)
Decimal
0.54802…+2πn<x<1.42382…+2πnor4.85936…+2πn<x<5.73515…+2πn
Solution steps
5−8cos(x)+4cos(2x)<0
Use the following identity: cos(2x)=−1+2cos2(x)5+4(−1+2cos2(x))−8cos(x)<0
Simplify 5+4(−1+2cos2(x))−8cos(x):8cos2(x)−8cos(x)+1
5+4(−1+2cos2(x))−8cos(x)
Expand 4(−1+2cos2(x)):−4+8cos2(x)
4(−1+2cos2(x))
Apply the distributive law: a(b+c)=ab+aca=4,b=−1,c=2cos2(x)=4(−1)+4⋅2cos2(x)
Apply minus-plus rules+(−a)=−a=−4⋅1+4⋅2cos2(x)
Simplify −4⋅1+4⋅2cos2(x):−4+8cos2(x)
−4⋅1+4⋅2cos2(x)
Multiply the numbers: 4⋅1=4=−4+4⋅2cos2(x)
Multiply the numbers: 4⋅2=8=−4+8cos2(x)
=−4+8cos2(x)
=5−4+8cos2(x)−8cos(x)
Subtract the numbers: 5−4=1=8cos2(x)−8cos(x)+1
8cos2(x)−8cos(x)+1<0
Let: u=cos(x)8u2−8u+1<0
8u2−8u+1<0:−42​​+21​<u<42​​+21​
8u2−8u+1<0
Complete the square 8u2−8u+1:8(u−21​)2−1
8u2−8u+1
Write 8u2−8u+1in the form: x2+2ax+a2Factor out 88(u2−u+81​)
2a=−1:a=−21​
2a=−1
Divide both sides by 2
2a=−1
Divide both sides by 222a​=2−1​
Simplifya=−21​
a=−21​
Add and subtract (−21​)28(u2−u+81​+(−21​)2−(−21​)2)
x2+2ax+a2=(x+a)2u2−1u+(−21​)2=(u−21​)28((u−21​)2+81​−(−21​)2)
Simplify8(u−21​)2−1
8(u−21​)2−1<0
Move 1to the right side
8(u−21​)2−1<0
Add 1 to both sides8(u−21​)2−1+1<0+1
Simplify8(u−21​)2<1
8(u−21​)2<1
Divide both sides by 8
8(u−21​)2<1
Divide both sides by 888(u−21​)2​<81​
Simplify(u−21​)2<81​
(u−21​)2<81​
For un<a, if nis even then
−81​​<u−21​<81​​
If a<u<bthen a<uandu<b−81​​<u−21​andu−21​<81​​
−81​​<u−21​:u>−42​​+21​
−81​​<u−21​
Switch sidesu−21​>−81​​
Simplify −81​​:−22​1​
−81​​
Simplify 81​​:22​1​​
81​​
Apply radical rule: assuming a≥0,b≥0=8​1​​
8​=22​
8​
Prime factorization of 8:23
8
8divides by 28=4⋅2=2⋅4
4divides by 24=2⋅2=2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2
=23
=23​
Apply exponent rule: ab+c=ab⋅ac=22⋅2​
Apply radical rule: =2​22​
Apply radical rule: 22​=2=22​
=22​1​​
=−22​1​​
Apply rule 1​=1=−22​1​
u−21​>−22​1​
Move 21​to the right side
u−21​>−22​1​
Add 21​ to both sidesu−21​+21​>−22​1​+21​
Simplify
u−21​+21​>−22​1​+21​
Simplify u−21​+21​:u
u−21​+21​
Add similar elements: −21​+21​>0
=u
Simplify −22​1​+21​:−42​​+21​
−22​1​+21​
22​1​=42​​
22​1​
Multiply by the conjugate 2​2​​=22​2​1⋅2​​
1⋅2​=2​
22​2​=4
22​2​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Add similar elements: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21+1
Add the numbers: 1+1=2=22
22=4=4
=42​​
=−42​​+21​
u>−42​​+21​
u>−42​​+21​
u>−42​​+21​
u−21​<81​​:u<42​​+21​
u−21​<81​​
Simplify 81​​:22​1​
81​​
Apply radical rule: assuming a≥0,b≥0=8​1​​
8​=22​
8​
Prime factorization of 8:23
8
8divides by 28=4⋅2=2⋅4
4divides by 24=2⋅2=2⋅2⋅2
2 is a prime number, therefore no further factorization is possible=2⋅2⋅2
=23
=23​
Apply exponent rule: ab+c=ab⋅ac=22⋅2​
Apply radical rule: =2​22​
Apply radical rule: 22​=2=22​
=22​1​​
Apply rule 1​=1=22​1​
u−21​<22​1​
Move 21​to the right side
u−21​<22​1​
Add 21​ to both sidesu−21​+21​<22​1​+21​
Simplify
u−21​+21​<22​1​+21​
Simplify u−21​+21​:u
u−21​+21​
Add similar elements: −21​+21​<0
=u
Simplify 22​1​+21​:42​​+21​
22​1​+21​
22​1​=42​​
22​1​
Multiply by the conjugate 2​2​​=22​2​1⋅2​​
1⋅2​=2​
22​2​=4
22​2​
Apply exponent rule: ab⋅ac=ab+c22​2​=2⋅221​⋅221​=21+21​+21​=21+21​+21​
Add similar elements: 21​+21​=2⋅21​=21+2⋅21​
2⋅21​=1
2⋅21​
Multiply fractions: a⋅cb​=ca⋅b​=21⋅2​
Cancel the common factor: 2=1
=21+1
Add the numbers: 1+1=2=22
22=4=4
=42​​
=42​​+21​
u<42​​+21​
u<42​​+21​
u<42​​+21​
Combine the intervalsu>−42​​+21​andu<42​​+21​
Merge Overlapping Intervals
u>−42​​+21​andu<42​​+21​
The intersection of two intervals is the set of numbers which are in both intervals
u>−42​​+21​andu<42​​+21​
−42​​+21​<u<42​​+21​
−42​​+21​<u<42​​+21​
−42​​+21​<u<42​​+21​
Substitute back u=cos(x)−42​​+21​<cos(x)<42​​+21​
If a<u<bthen a<uandu<b−42​​+21​<cos(x)andcos(x)<42​​+21​
−42​​+21​<cos(x):−arccos(4−2​+2​)+2πn<x<arccos(4−2​+2​)+2πn
−42​​+21​<cos(x)
Switch sidescos(x)>−42​​+21​
For cos(x)>a, if −1≤a<1 then −arccos(a)+2πn<x<arccos(a)+2πn−arccos(−42​​+21​)+2πn<x<arccos(−42​​+21​)+2πn
Simplify −arccos(−42​​+21​):−arccos(4−2​+2​)
−arccos(−42​​+21​)
Join −42​​+21​:22​−1+2​​
−42​​+21​
Least Common Multiplier of 4,2:4
4,2
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 4 or 2=2⋅2
Multiply the numbers: 2⋅2=4=4
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4
For 21​:multiply the denominator and numerator by 221​=2⋅21⋅2​=42​
=−42​​+42​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=4−2​+2​
Factor −2​+2:2​(−1+2​)
−2​+2
2=2​2​=−2​+2​2​
Factor out common term 2​=2​(−1+2​)
=42​(−1+2​)​
Factor 4:22
Factor 4=22
=222​(2​−1)​
Cancel 222​(−1+2​)​:223​−1+2​​
222​(−1+2​)​
Apply radical rule: 2​=221​=22221​(2​−1)​
Apply exponent rule: xbxa​=xb−a1​22221​​=22−21​1​=22−21​−1+2​​
Subtract the numbers: 2−21​=23​=223​−1+2​​
=223​−1+2​​
223​=22​
223​
223​=21+21​=21+21​
Apply exponent rule: xa+b=xaxb=21⋅221​
Refine=22​
=22​−1+2​​
=−arccos(22​2​−1​)
=−arccos(42−2​​)
Simplify arccos(−42​​+21​):arccos(4−2​+2​)
arccos(−42​​+21​)
Join −42​​+21​:22​−1+2​​
−42​​+21​
Least Common Multiplier of 4,2:4
4,2
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 4 or 2=2⋅2
Multiply the numbers: 2⋅2=4=4
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4
For 21​:multiply the denominator and numerator by 221​=2⋅21⋅2​=42​
=−42​​+42​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=4−2​+2​
Factor −2​+2:2​(−1+2​)
−2​+2
2=2​2​=−2​+2​2​
Factor out common term 2​=2​(−1+2​)
=42​(−1+2​)​
Factor 4:22
Factor 4=22
=222​(2​−1)​
Cancel 222​(−1+2​)​:223​−1+2​​
222​(−1+2​)​
Apply radical rule: 2​=221​=22221​(2​−1)​
Apply exponent rule: xbxa​=xb−a1​22221​​=22−21​1​=22−21​−1+2​​
Subtract the numbers: 2−21​=23​=223​−1+2​​
=223​−1+2​​
223​=22​
223​
223​=21+21​=21+21​
Apply exponent rule: xa+b=xaxb=21⋅221​
Refine=22​
=22​−1+2​​
=arccos(22​−1+2​​)
=arccos(4−2​+2​)
−arccos(4−2​+2​)+2πn<x<arccos(4−2​+2​)+2πn
cos(x)<42​​+21​:arccos(42​+2​)+2πn<x<2π−arccos(42​+2​)+2πn
cos(x)<42​​+21​
For cos(x)<a, if −1<a≤1 then arccos(a)+2πn<x<2π−arccos(a)+2πnarccos(42​​+21​)+2πn<x<2π−arccos(42​​+21​)+2πn
Simplify arccos(42​​+21​):arccos(42​+2​)
arccos(42​​+21​)
Join 42​​+21​:22​1+2​​
42​​+21​
Least Common Multiplier of 4,2:4
4,2
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 4 or 2=2⋅2
Multiply the numbers: 2⋅2=4=4
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4
For 21​:multiply the denominator and numerator by 221​=2⋅21⋅2​=42​
=42​​+42​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=42​+2​
Factor 2​+2:2​(1+2​)
2​+2
2=2​2​=2​+2​2​
Factor out common term 2​=2​(1+2​)
=42​(1+2​)​
Factor 4:22
Factor 4=22
=222​(1+2​)​
Cancel 222​(1+2​)​:223​1+2​​
222​(1+2​)​
Apply radical rule: 2​=221​=22221​(1+2​)​
Apply exponent rule: xbxa​=xb−a1​22221​​=22−21​1​=22−21​1+2​​
Subtract the numbers: 2−21​=23​=223​1+2​​
=223​1+2​​
223​=22​
223​
223​=21+21​=21+21​
Apply exponent rule: xa+b=xaxb=21⋅221​
Refine=22​
=22​1+2​​
=arccos(22​1+2​​)
=arccos(42​+2​)
Simplify 2π−arccos(42​​+21​):2π−arccos(42​+2​)
2π−arccos(42​​+21​)
Join 42​​+21​:42​+2​
42​​+21​
Least Common Multiplier of 4,2:4
4,2
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 2:2
2
2 is a prime number, therefore no factorization is possible=2
Multiply each factor the greatest number of times it occurs in either 4 or 2=2⋅2
Multiply the numbers: 2⋅2=4=4
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 4
For 21​:multiply the denominator and numerator by 221​=2⋅21⋅2​=42​
=42​​+42​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=42​+2​
=2π−arccos(42+2​​)
arccos(42​+2​)+2πn<x<2π−arccos(42​+2​)+2πn
Combine the intervals−arccos(4−2​+2​)+2πn<x<arccos(4−2​+2​)+2πnandarccos(42​+2​)+2πn<x<2π−arccos(42​+2​)+2πn
Merge Overlapping Intervalsarccos(42​+2​)+2πn<x<arccos(4−2​+2​)+2πnor−arccos(4−2​+2​)+2π+2πn<x<2π−arccos(42​+2​)+2πn

Popular Examples

sin(a)<0sin^{(2)}(x)<= ((1))/((2))cos^2(x)-1/4 <= 0-sin(θ)+cos(θ)-sqrt(10)<0cos(x)+sqrt(3)sin(x)>= sqrt(2)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024