Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

cos(x)+sqrt(3)sin(x)>= sqrt(2)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

cos(x)+3​sin(x)≥2​

Solution

12π​+2πn≤x≤127π​+2πn
+2
Interval Notation
[12π​+2πn,127π​+2πn]
Decimal
0.26179…+2πn≤x≤1.83259…+2πn
Solution steps
cos(x)+3​sin(x)≥2​
Rewrite using trig identities
Divide both sides by 22cos(x)+3​sin(x)​≥22​​
Expand 2cos(x)+3​sin(x)​:21​cos(x)+23​​sin(x)
2cos(x)+3​sin(x)​
Apply the fraction rule: ca±b​=ca​±cb​2cos(x)+3​sin(x)​=2cos(x)​+23​sin(x)​=2cos(x)​+23​sin(x)​
=21​cos(x)+23​​sin(x)
21​cos(x)+23​​sin(x)≥22​​
23​​=cos(6π​)21​cos(x)+cos(6π​)sin(x)≥22​​
21​=sin(6π​)sin(6π​)cos(x)+cos(6π​)sin(x)≥22​​
Use the following identity: cos(s)sin(t)+cos(t)sin(s)=sin(s+t)sin(6π​+x)≥22​​
sin(6π​+x)≥22​​
For sin(x)≥a, if −1<a<1 then arcsin(a)+2πn≤x≤π−arcsin(a)+2πnarcsin(22​​)+2πn≤(6π​+x)≤π−arcsin(22​​)+2πn
If a≤u≤bthen a≤uandu≤barcsin(22​​)+2πn≤6π​+xand6π​+x≤π−arcsin(22​​)+2πn
arcsin(22​​)+2πn≤6π​+x:x≥2πn+12π​
arcsin(22​​)+2πn≤6π​+x
Switch sides6π​+x≥arcsin(22​​)+2πn
Simplify arcsin(22​​)+2πn:4π​+2πn
arcsin(22​​)+2πn
Use the following trivial identity:arcsin(22​​)=4π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=4π​+2πn
6π​+x≥4π​+2πn
Move 6π​to the right side
6π​+x≥4π​+2πn
Subtract 6π​ from both sides6π​+x−6π​≥4π​+2πn−6π​
Simplify
6π​+x−6π​≥4π​+2πn−6π​
Simplify 6π​+x−6π​:x
6π​+x−6π​
Add similar elements: 6π​−6π​≥0
=x
Simplify 4π​+2πn−6π​:2πn+12π​
4π​+2πn−6π​
Group like terms=2πn+4π​−6π​
Least Common Multiplier of 4,6:12
4,6
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Multiply each factor the greatest number of times it occurs in either 4 or 6=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 4π​:multiply the denominator and numerator by 34π​=4⋅3π3​=12π3​
For 6π​:multiply the denominator and numerator by 26π​=6⋅2π2​=12π2​
=12π3​−12π2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12π3−π2​
Add similar elements: 3π−2π=π=2πn+12π​
x≥2πn+12π​
x≥2πn+12π​
x≥2πn+12π​
6π​+x≤π−arcsin(22​​)+2πn:x≤127π​+2πn
6π​+x≤π−arcsin(22​​)+2πn
Simplify π−arcsin(22​​)+2πn:π−4π​+2πn
π−arcsin(22​​)+2πn
Use the following trivial identity:arcsin(22​​)=4π​x021​22​​23​​1​arcsin(x)06π​4π​3π​2π​​arcsin(x)0∘30∘45∘60∘90∘​​=π−4π​+2πn
6π​+x≤π−4π​+2πn
Move 6π​to the right side
6π​+x≤π−4π​+2πn
Subtract 6π​ from both sides6π​+x−6π​≤π−4π​+2πn−6π​
Simplify
6π​+x−6π​≤π−4π​+2πn−6π​
Simplify 6π​+x−6π​:x
6π​+x−6π​
Add similar elements: 6π​−6π​≤0
=x
Simplify π−4π​+2πn−6π​:π+2πn−125π​
π−4π​+2πn−6π​
Group like terms=π+2πn−4π​−6π​
Least Common Multiplier of 4,6:12
4,6
Least Common Multiplier (LCM)
Prime factorization of 4:2⋅2
4
4divides by 24=2⋅2=2⋅2
Prime factorization of 6:2⋅3
6
6divides by 26=3⋅2=2⋅3
2,3 are all prime numbers, therefore no further factorization is possible=2⋅3
Multiply each factor the greatest number of times it occurs in either 4 or 6=2⋅2⋅3
Multiply the numbers: 2⋅2⋅3=12=12
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM 12
For 4π​:multiply the denominator and numerator by 34π​=4⋅3π3​=12π3​
For 6π​:multiply the denominator and numerator by 26π​=6⋅2π2​=12π2​
=−12π3​−12π2​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12−π3−π2​
Add similar elements: −3π−2π=−5π=12−5π​
Apply the fraction rule: b−a​=−ba​=π+2πn−125π​
x≤π+2πn−125π​
x≤π+2πn−125π​
x≤π+2πn−125π​
Simplify π−125π​:127π​
π−125π​
Convert element to fraction: π=12π12​=12π12​−125π​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=12π12−5π​
Add similar elements: 12π−5π=7π=127π​
x≤127π​+2πn
Combine the intervalsx≥2πn+12π​andx≤127π​+2πn
Merge Overlapping Intervals12π​+2πn≤x≤127π​+2πn

Popular Examples

sin(0.5pix)<0.62+sin(x)>= 0cos^2(θ)-1>= 0sec(t)>0sec^2(x)<= tan^2(x)+sec(x)
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024