Solutions
Integral CalculatorDerivative CalculatorAlgebra CalculatorMatrix CalculatorMore...
Graphing
Line Graph CalculatorExponential Graph CalculatorQuadratic Graph CalculatorSin graph CalculatorMore...
Calculators
BMI CalculatorCompound Interest CalculatorPercentage CalculatorAcceleration CalculatorMore...
Geometry
Pythagorean Theorem CalculatorCircle Area CalculatorIsosceles Triangle CalculatorTriangles CalculatorMore...
Tools
NotebookGroupsCheat SheetsWorksheetsPracticeVerify
en
English
Español
Português
Français
Deutsch
Italiano
Русский
中文(简体)
한국어
日本語
Tiếng Việt
עברית
العربية
Popular Trigonometry >

sec^2(x)<= tan^2(x)+sec(x)

  • Pre Algebra
  • Algebra
  • Pre Calculus
  • Calculus
  • Functions
  • Linear Algebra
  • Trigonometry
  • Statistics
  • Physics
  • Chemistry
  • Finance
  • Economics
  • Conversions

Solution

sec2(x)≤tan2(x)+sec(x)

Solution

2πn≤x<2π​+2πnor23π​+2πn<x≤2π+2πn
+2
Interval Notation
[2πn,2π​+2πn)∪(23π​+2πn,2π+2πn]
Decimal
2πn≤x<1.57079…+2πnor4.71238…+2πn<x≤6.28318…+2πn
Solution steps
sec2(x)≤tan2(x)+sec(x)
Subtract tan2(x)+sec(x) from both sidessec2(x)−(tan2(x)+sec(x))≤tan2(x)+sec(x)−(tan2(x)+sec(x))
sec2(x)−(tan2(x)+sec(x))≤0
Periodicity of sec2(x)−(tan2(x)+sec(x)):2π
The compound periodicity of the sum of periodic functions is the least common multiplier of the periodssec2(x),(tan2(x)+sec(x))
Periodicity of sec2(x):π
Periodicity of secn(x)=2Periodicityofsec(x)​,if n is even
Periodicity of sec(x):2π
Periodicity of sec(x)is 2π=2π
22π​
Simplifyπ
Periodicity of (tan2(x)+sec(x)):2π
(tan2(x)+sec(x))is composed of the following functions and periods:sec(x)with periodicity of 2π
The compound periodicity is:2π
Combine periods: π,2π
=2π
Express with sin, cos
sec2(x)−(tan2(x)+sec(x))≤0
Use the basic trigonometric identity: sec(x)=cos(x)1​(cos(x)1​)2−(tan2(x)+cos(x)1​)≤0
Use the basic trigonometric identity: tan(x)=cos(x)sin(x)​(cos(x)1​)2−((cos(x)sin(x)​)2+cos(x)1​)≤0
(cos(x)1​)2−((cos(x)sin(x)​)2+cos(x)1​)≤0
Simplify (cos(x)1​)2−((cos(x)sin(x)​)2+cos(x)1​):cos2(x)1−sin2(x)−cos(x)​
(cos(x)1​)2−((cos(x)sin(x)​)2+cos(x)1​)
(cos(x)1​)2=cos2(x)1​
(cos(x)1​)2
Apply exponent rule: (ba​)c=bcac​=cos2(x)12​
Apply rule 1a=112=1=cos2(x)1​
−((cos(x)sin(x)​)2+cos(x)1​)=−cos2(x)sin2(x)+cos(x)​
−((cos(x)sin(x)​)2+cos(x)1​)
Apply exponent rule: (ba​)c=bcac​=−(cos2(x)sin2(x)​+cos(x)1​)
Join cos2(x)sin2(x)​+cos(x)1​:cos2(x)sin2(x)+cos(x)​
cos2(x)sin2(x)​+cos(x)1​
Least Common Multiplier of cos2(x),cos(x):cos2(x)
cos2(x),cos(x)
Lowest Common Multiplier (LCM)
Compute an expression comprised of factors that appear either in cos2(x) or cos(x)=cos2(x)
Adjust Fractions based on the LCM
Multiply each numerator by the same amount needed to multiply its
corresponding denominator to turn it into the LCM cos2(x)
For cos(x)1​:multiply the denominator and numerator by cos(x)cos(x)1​=cos(x)cos(x)1⋅cos(x)​=cos2(x)cos(x)​
=cos2(x)sin2(x)​+cos2(x)cos(x)​
Since the denominators are equal, combine the fractions: ca​±cb​=ca±b​=cos2(x)sin2(x)+cos(x)​
=−cos2(x)sin2(x)+cos(x)​
=cos2(x)1​−cos2(x)sin2(x)+cos(x)​
Apply rule ca​±cb​=ca±b​=cos2(x)1−(sin2(x)+cos(x))​
−(sin2(x)+cos(x)):−sin2(x)−cos(x)
−(sin2(x)+cos(x))
Distribute parentheses=−(sin2(x))−(cos(x))
Apply minus-plus rules+(−a)=−a=−sin2(x)−cos(x)
=cos2(x)1−sin2(x)−cos(x)​
cos2(x)1−sin2(x)−cos(x)​≤0
Find the zeroes and undifined points of cos2(x)1−sin2(x)−cos(x)​for 0≤x<2π
To find the zeroes, set the inequality to zerocos2(x)1−sin2(x)−cos(x)​=0
cos2(x)1−sin2(x)−cos(x)​=0,0≤x<2π:x=0
cos2(x)1−sin2(x)−cos(x)​=0,0≤x<2π
g(x)f(x)​=0⇒f(x)=01−sin2(x)−cos(x)=0
Rewrite using trig identities
1−cos(x)−sin2(x)
Use the Pythagorean identity: 1=cos2(x)+sin2(x)1−sin2(x)=cos2(x)=−cos(x)+cos2(x)
−cos(x)+cos2(x)=0
Solve by substitution
−cos(x)+cos2(x)=0
Let: cos(x)=u−u+u2=0
−u+u2=0:u=1,u=0
−u+u2=0
Write in the standard form ax2+bx+c=0u2−u=0
Solve with the quadratic formula
u2−u=0
Quadratic Equation Formula:
For a=1,b=−1,c=0u1,2​=2⋅1−(−1)±(−1)2−4⋅1⋅0​​
u1,2​=2⋅1−(−1)±(−1)2−4⋅1⋅0​​
(−1)2−4⋅1⋅0​=1
(−1)2−4⋅1⋅0​
(−1)2=1
(−1)2
Apply exponent rule: (−a)n=an,if n is even(−1)2=12=12
Apply rule 1a=1=1
4⋅1⋅0=0
4⋅1⋅0
Apply rule 0⋅a=0=0
=1−0​
Subtract the numbers: 1−0=1=1​
Apply rule 1​=1=1
u1,2​=2⋅1−(−1)±1​
Separate the solutionsu1​=2⋅1−(−1)+1​,u2​=2⋅1−(−1)−1​
u=2⋅1−(−1)+1​:1
2⋅1−(−1)+1​
Apply rule −(−a)=a=2⋅11+1​
Add the numbers: 1+1=2=2⋅12​
Multiply the numbers: 2⋅1=2=22​
Apply rule aa​=1=1
u=2⋅1−(−1)−1​:0
2⋅1−(−1)−1​
Apply rule −(−a)=a=2⋅11−1​
Subtract the numbers: 1−1=0=2⋅10​
Multiply the numbers: 2⋅1=2=20​
Apply rule a0​=0,a=0=0
The solutions to the quadratic equation are:u=1,u=0
Substitute back u=cos(x)cos(x)=1,cos(x)=0
cos(x)=1,cos(x)=0
cos(x)=1,0≤x<2π:x=0
cos(x)=1,0≤x<2π
General solutions for cos(x)=1
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=0+2πn
x=0+2πn
Solve x=0+2πn:x=2πn
x=0+2πn
0+2πn=2πnx=2πn
x=2πn
Solutions for the range 0≤x<2πx=0
cos(x)=0,0≤x<2π:x=2π​,x=23π​
cos(x)=0,0≤x<2π
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
Solutions for the range 0≤x<2πx=2π​,x=23π​
Combine all the solutionsx=0,x=2π​,x=23π​
Since the equation is undefined for:2π​,23π​x=0
Find the undefined points:x=2π​,x=23π​
Find the zeros of the denominatorcos2(x)=0
Apply rule xn=0⇒x=0
cos(x)=0
General solutions for cos(x)=0
cos(x) periodicity table with 2πn cycle:
x06π​4π​3π​2π​32π​43π​65π​​cos(x)123​​22​​21​0−21​−22​​−23​​​xπ67π​45π​34π​23π​35π​47π​611π​​cos(x)−1−23​​−22​​−21​021​22​​23​​​​
x=2π​+2πn,x=23π​+2πn
x=2π​+2πn,x=23π​+2πn
Solutions for the range 0≤x<2πx=2π​,x=23π​
0,2π​,23π​
Identify the intervals0<x<2π​,2π​<x<23π​,23π​<x<2π
Summarize in a table:1−sin2(x)−cos(x)cos2(x)cos2(x)1−sin2(x)−cos(x)​​x=00+0​0<x<2π​−+−​x=2π​00Undefined​2π​<x<23π​+++​x=23π​00Undefined​23π​<x<2π−+−​x=2π0+0​​
Identify the intervals that satisfy the required condition: ≤0x=0or0<x<2π​or23π​<x<2πorx=2π
Merge Overlapping Intervals
0≤x<2π​or23π​<x<2πorx=2π
The union of two intervals is the set of numbers which are in either interval
x=0or0<x<2π​
0≤x<2π​
The union of two intervals is the set of numbers which are in either interval
0≤x<2π​or23π​<x<2π
0≤x<2π​or23π​<x<2π
The union of two intervals is the set of numbers which are in either interval
0≤x<2π​or23π​<x<2πorx=2π
0≤x<2π​or23π​<x≤2π
0≤x<2π​or23π​<x≤2π
Apply the periodicity of sec2(x)−(tan2(x)+sec(x))2πn≤x<2π​+2πnor23π​+2πn<x≤2π+2πn

Popular Examples

sin(x)-sqrt(3)cos(x)<= 0(4cos^2(x)-3)/(sin(x)+cos(x)+5)<0cos(t)>= 0-1+tan(x)<= 1cos(x)(2sin(x)-1)<= 0,-pi<x<= pi
Study ToolsAI Math SolverPopular ProblemsWorksheetsStudy GuidesPracticeCheat SheetsCalculatorsGraphing CalculatorGeometry CalculatorVerify Solution
AppsSymbolab App (Android)Graphing Calculator (Android)Practice (Android)Symbolab App (iOS)Graphing Calculator (iOS)Practice (iOS)Chrome ExtensionSymbolab Math Solver API
CompanyAbout SymbolabBlogHelp
LegalPrivacyTermsCookie PolicyCookie SettingsDo Not Sell or Share My Personal InfoCopyright, Community Guidelines, DSA & other Legal ResourcesLearneo Legal Center
Social Media
Symbolab, a Learneo, Inc. business
© Learneo, Inc. 2024